The Fast Solution of Boundary Integral Equations

The use of surface potentials to describe solutions of partial differential equations goes back to the middle of the 19th century. Numerical approximation procedures, known today as Boundary Element Methods (BEM), have been developed in the physics and engineering community since the 1950s. These me...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rjasanow, Sergej (Συγγραφέας), Steinbach, Olaf (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Σειρά:Mathematical and Analytical Techniques with Applications to Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03994nam a22005535i 4500
001 978-0-387-34042-5
003 DE-He213
005 20151204162628.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387340425  |9 978-0-387-34042-5 
024 7 |a 10.1007/0-387-34042-4  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Rjasanow, Sergej.  |e author. 
245 1 4 |a The Fast Solution of Boundary Integral Equations  |h [electronic resource] /  |c by Sergej Rjasanow, Olaf Steinbach. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a XII, 284 p. 97 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical and Analytical Techniques with Applications to Engineering,  |x 1559-7458 
505 0 |a Boundary Integral Equations -- Boundary Element Methods -- Approximation of Boundary Element Matrices -- Implementation and Numerical Examples. 
520 |a The use of surface potentials to describe solutions of partial differential equations goes back to the middle of the 19th century. Numerical approximation procedures, known today as Boundary Element Methods (BEM), have been developed in the physics and engineering community since the 1950s. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations. The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations. The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation. 
650 0 |a Mathematics. 
650 0 |a Image processing. 
650 0 |a Differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Ordinary Differential Equations. 
700 1 |a Steinbach, Olaf.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387340418 
830 0 |a Mathematical and Analytical Techniques with Applications to Engineering,  |x 1559-7458 
856 4 0 |u http://dx.doi.org/10.1007/0-387-34042-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)