Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lapidus, Michel L. (Συγγραφέας), Frankenhuijsen, Machiel van (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05261nam a22005895i 4500
001 978-0-387-35208-4
003 DE-He213
005 20151204182455.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387352084  |9 978-0-387-35208-4 
024 7 |a 10.1007/978-0-387-35208-4  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 |a Lapidus, Michel L.  |e author. 
245 1 0 |a Fractal Geometry, Complex Dimensions and Zeta Functions  |h [electronic resource] :  |b Geometry and Spectra of Fractal Strings /  |c by Michel L. Lapidus, Machiel van Frankenhuijsen. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XXIV, 460 p. 54 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Complex Dimensions of Ordinary Fractal Strings -- Complex Dimensions of Self-Similar Fractal Strings -- Complex Dimensions of Nonlattice Self-Similar Strings: Quasiperiodic Patterns and Diophantine Approximation -- Generalized Fractal Strings Viewed as Measures -- Explicit Formulas for Generalized Fractal Strings -- The Geometry and the Spectrum of Fractal Strings -- Periodic Orbits of Self-Similar Flows -- Tubular Neighborhoods and Minkowski Measurability -- The Riemann Hypothesis and Inverse Spectral Problems -- Generalized Cantor Strings and their Oscillations -- The Critical Zeros of Zeta Functions -- Concluding Comments, Open Problems, and Perspectives. 
520 |a Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula The method of Diophantine approximation is used to study self-similar strings and flows Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions Throughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts, and discusses several open problems and extensions. The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics. From Reviews of Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions, by Michel Lapidus and Machiel van Frankenhuysen, Birkhäuser Boston Inc., 2000. "This highly original self-contained book will appeal to geometers, fractalists, mathematical physicists and number theorists, as well as to graduate students in these fields and others interested in gaining insight into these rich areas either for its own sake or with a view to applications. They will find it a stimulating guide, well written in a clear and pleasant style." –Mathematical Reviews "It is the reviewer’s opinion that the authors have succeeded in showing that the complex dimensions provide a very natural and unifying mathematical framework for investigating the oscillations in the geometry and the spectrum of a fractal string. The book is well written. The exposition is self-contained, intelligent and well paced." –Bulletin of the London Mathematical Society. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Measure theory. 
650 0 |a Partial differential equations. 
650 0 |a Number theory. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Number Theory. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Frankenhuijsen, Machiel van.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387332857 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-35208-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)