Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2006.
|
Σειρά: | Springer Monographs in Mathematics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Complex Dimensions of Ordinary Fractal Strings
- Complex Dimensions of Self-Similar Fractal Strings
- Complex Dimensions of Nonlattice Self-Similar Strings: Quasiperiodic Patterns and Diophantine Approximation
- Generalized Fractal Strings Viewed as Measures
- Explicit Formulas for Generalized Fractal Strings
- The Geometry and the Spectrum of Fractal Strings
- Periodic Orbits of Self-Similar Flows
- Tubular Neighborhoods and Minkowski Measurability
- The Riemann Hypothesis and Inverse Spectral Problems
- Generalized Cantor Strings and their Oscillations
- The Critical Zeros of Zeta Functions
- Concluding Comments, Open Problems, and Perspectives.