Fractal Geometry, Complex Dimensions and Zeta Functions Geometry and Spectra of Fractal Strings /

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Key Features The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lapidus, Michel L. (Συγγραφέας), Frankenhuijsen, Machiel van (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Complex Dimensions of Ordinary Fractal Strings
  • Complex Dimensions of Self-Similar Fractal Strings
  • Complex Dimensions of Nonlattice Self-Similar Strings: Quasiperiodic Patterns and Diophantine Approximation
  • Generalized Fractal Strings Viewed as Measures
  • Explicit Formulas for Generalized Fractal Strings
  • The Geometry and the Spectrum of Fractal Strings
  • Periodic Orbits of Self-Similar Flows
  • Tubular Neighborhoods and Minkowski Measurability
  • The Riemann Hypothesis and Inverse Spectral Problems
  • Generalized Cantor Strings and their Oscillations
  • The Critical Zeros of Zeta Functions
  • Concluding Comments, Open Problems, and Perspectives.