Measure Theory and Probability Theory
This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended prima...
Κύριοι συγγραφείς: | , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2006.
|
Σειρά: | Springer Texts in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Measures and Integration: An Informal Introduction
- Measures
- Integration
- Lp-Spaces
- Differentiation
- Product Measures, Convolutions, and Transforms
- Probability Spaces
- Independence
- Laws of Large Numbers
- Convergence in Distribution
- Characteristic Functions
- Central Limit Theorems
- Conditional Expectation and Conditional Probability
- Discrete Parameter Martingales
- Markov Chains and MCMC
- Stochastic Processes
- Limit Theorems for Dependent Processes
- The Bootstrap
- Branching Processes.