Problems and Theorems in Classical Set Theory

This is the first comprehensive collection of problems in set theory. Most of classical set theory is covered, classical in the sense that independence methods are not used, but classical also in the sense that most results come from the period between 1920-1970. Many problems are also related to ot...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Komjáth, Péter (Συγγραφέας), Totik, Vilmos (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Problem Books in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04247nam a22004815i 4500
001 978-0-387-36219-9
003 DE-He213
005 20151204170430.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387362199  |9 978-0-387-36219-9 
024 7 |a 10.1007/0-387-36219-3  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Komjáth, Péter.  |e author. 
245 1 0 |a Problems and Theorems in Classical Set Theory  |h [electronic resource] /  |c by Péter Komjáth, Vilmos Totik. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XII, 516 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Problem Books in Mathematics,  |x 0941-3502 
505 0 |a Problems -- Operations on sets -- Countability -- Equivalence -- Continuum -- Sets of reals and real functions -- Ordered sets -- Order types -- Ordinals -- Ordinal arithmetic -- Cardinals -- Partially ordered sets -- Transfinite enumeration -- Euclidean spaces -- Zorn’s lemma -- Hamel bases -- The continuum hypothesis -- Ultrafilters on ? -- Families of sets -- The Banach-Tarski paradox -- Stationary sets in ?1 -- Stationary sets in larger cardinals -- Canonical functions -- Infinite graphs -- Partition relations -- ?-systems -- Set mappings -- Trees -- The measure problem -- Stationary sets in [?]<? -- The axiom of choice -- Well-founded sets and the axiom of foundation -- Solutions -- Operations on sets -- Countability -- Equivalence -- Continuum -- Sets of reals and real functions -- Ordered sets -- Order types -- Ordinals -- Ordinal arithmetic -- Cardinals -- Partially ordered sets -- Transfinite enumeration -- Euclidean spaces -- Zorn’s lemma -- Hamel bases -- The continuum hypothesis -- Ultrafilters on ? -- Families of sets -- The Banach-Tarski paradox -- Stationary sets in ?1 -- Stationary sets in larger cardinals -- Canonical functions -- Infinite graphs -- Partition relations -- ?-systems -- Set mappings -- Trees -- The measure problem -- Stationary sets in [?]<? -- The axiom of choice -- Well-founded sets and the axiom of foundation. 
520 |a This is the first comprehensive collection of problems in set theory. Most of classical set theory is covered, classical in the sense that independence methods are not used, but classical also in the sense that most results come from the period between 1920-1970. Many problems are also related to other fields of mathematics such as algebra, combinatorics, topology and real analysis. The authors choose not to concentrate on the axiomatic framework, although some aspects are elaborated (axiom of foundation and the axiom of choice). Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. The problems are organized in a way that earlier problems help in the solution of later ones. For many problems, the authors trace the origin and provide proper references at the end of the solution. The book follows a tradition of Hungarian mathematics started with Pólya-Szegõ's problem book in analysis and continued with Lovász' problem book in combinatorics. This is destined to become a classic, and will be an important resource for students and researchers. Péter Komjáth is a professor of mathematics at the Eötvös Lóránd University, Budapest. Vilmos Totik is a professor of mathematics at the University of South Florida, Tampa and University of Szeged. 
650 0 |a Mathematics. 
650 0 |a Mathematical logic. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Combinatorics. 
700 1 |a Totik, Vilmos.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387302935 
830 0 |a Problem Books in Mathematics,  |x 0941-3502 
856 4 0 |u http://dx.doi.org/10.1007/0-387-36219-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)