Nonparametric Functional Data Analysis Theory and Practice /

Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Ferraty, Frédéric (Συγγραφέας), Vieu, Philippe (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04948nam a22005895i 4500
001 978-0-387-36620-3
003 DE-He213
005 20151204150426.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387366203  |9 978-0-387-36620-3 
024 7 |a 10.1007/0-387-36620-2  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Ferraty, Frédéric.  |e author. 
245 1 0 |a Nonparametric Functional Data Analysis  |h [electronic resource] :  |b Theory and Practice /  |c by Frédéric Ferraty, Philippe Vieu. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XX, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Statistical Background for Nonparametric Statistics and Functional Data -- to Functional Nonparametric Statistics -- Some Functional Datasets and Associated Statistical Problematics -- What is a Well-Adapted Space for Functional Data? -- Local Weighting of Functional Variables -- Nonparametric Prediction from Functional Data -- Functional Nonparametric Prediction Methodologies -- Some Selected Asymptotics -- Computational Issues -- Nonparametric Classification of Functional Data -- Functional Nonparametric Supervised Classification -- Functional Nonparametric Unsupervised Classification -- Nonparametric Methods for Dependent Functional Data -- Mixing, Nonparametric and Functional Statistics -- Some Selected Asymptotics -- Application to Continuous Time Processes Prediction -- Conclusions -- Small Ball Probabilities and Semi-metrics -- Some Perspectives. 
520 |a Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. This book starts from theoretical foundations including functional nonparametric modeling, description of the mathematical framework, construction of the statistical methods, and statements of their asymptotic behaviors. It proceeds to computational issues including R and S-PLUS routines. Several functional datasets in chemometrics, econometrics, and pattern recognition are used to emphasize the wide scope of nonparametric functional data analysis in applied sciences. The companion Web site includes R and S-PLUS routines, command lines for reproducing examples presented in the book, and the functional datasets. Rather than set application against theory, this book is really an interface of these two features of statistics. A special effort has been made in writing this book to accommodate several levels of reading. The computational aspects are oriented toward practitioners whereas open problems emerging from this new field of statistics will attract Ph.D. students and academic researchers. Finally, this book is also accessible to graduate students starting in the area of functional statistics. Frédéric Ferraty and Philippe Vieu are both researchers in statistics at Toulouse University (France). They are co-founders and co-organizers of the working group STAPH which acquired an international reputation for functional and operatorial statistics. They are authors of many international publications in nonparametric inference as well as functional data analysis. Their scientific works are based on extensive collaborations both with academic statisticians and with scientists from other areas. They have been invited to organize special sessions on functional data in recent international conferences and to teach Ph.D. courses in various countries. 
650 0 |a Mathematics. 
650 0 |a Earth sciences. 
650 0 |a Mathematical statistics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Environmental sciences. 
650 0 |a Econometrics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Econometrics. 
650 2 4 |a Math. Appl. in Environmental Science. 
650 2 4 |a Earth Sciences, general. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a Vieu, Philippe.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387303697 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/0-387-36620-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)