Evolutionary Algorithms for Solving Multi-Objective Problems Second Edition /

This textbook is the second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly augmented with contemporary knowledge and adapted for the classroom. All the various features of multi-objective evolutionary algorithms (MOEAs) are presented in an innovative and stude...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Coello, Carlos A. Coello (Συγγραφέας), Lamont, Gary B. (Συγγραφέας), Veldhuizen, David A. Van (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Σειρά:Genetic and Evolutionary Computation Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04165nam a22005775i 4500
001 978-0-387-36797-2
003 DE-He213
005 20151204191144.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387367972  |9 978-0-387-36797-2 
024 7 |a 10.1007/978-0-387-36797-2  |2 doi 
040 |d GrThAP 
050 4 |a QA76.6-76.66 
072 7 |a UM  |2 bicssc 
072 7 |a COM051000  |2 bisacsh 
082 0 4 |a 005.11  |2 23 
100 1 |a Coello, Carlos A. Coello.  |e author. 
245 1 0 |a Evolutionary Algorithms for Solving Multi-Objective Problems  |h [electronic resource] :  |b Second Edition /  |c by Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuizen. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a XXI, 800 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Genetic and Evolutionary Computation Series,  |x 1932-0167 
505 0 |a Basic Concepts -- MOP Evolutionary Algorithm Approaches -- MOEA Local Search and Coevolution -- MOEA Test Suites -- MOEA Testing and Analysis -- MOEA Theory and Issues -- Applications -- MOEA Parallelization -- Multi-Criteria Decision Making -- Alternative Metaheuristics. 
520 |a This textbook is the second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly augmented with contemporary knowledge and adapted for the classroom. All the various features of multi-objective evolutionary algorithms (MOEAs) are presented in an innovative and student-friendly fashion, incorporating state-of-the-art research results. The diversity of serial and parallel MOEA structures are given, evaluated and compared. The book provides detailed insight into the application of MOEA techniques to an array of practical problems. The assortment of test suites are discussed along with the variety of appropriate metrics and relevant statistical performance techniques. Distinctive features of the new edition include: Designed for graduate courses on Evolutionary Multi-Objective Optimization, with exercises and links to a complete set of teaching material including tutorials Updated and expanded MOEA exercises, discussion questions and research ideas at the end of each chapter New chapter devoted to coevolutionary and memetic MOEAs with added material on solving constrained multi-objective problems Additional material on the most recent MOEA test functions and performance measures, as well as on the latest developments on the theoretical foundations of MOEAs An exhaustive index and bibliography This self-contained reference is invaluable to students, researchers and in particular to computer scientists, operational research scientists and engineers working in evolutionary computation, genetic algorithms and artificial intelligence. "...If you still do not know this book, then, I urge you to run-don't walk-to your nearest on-line or off-line book purveyor and click, signal or otherwise buy this important addition to our literature." -David E. Goldberg, University of Illinois at Urbana-Champaign. 
650 0 |a Computer science. 
650 0 |a Computer programming. 
650 0 |a Computers. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Probabilities. 
650 1 4 |a Computer Science. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Optimization. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Lamont, Gary B.  |e author. 
700 1 |a Veldhuizen, David A. Van.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387332543 
830 0 |a Genetic and Evolutionary Computation Series,  |x 1932-0167 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-36797-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)