Landscape Pattern Analysis for Assessing Ecosystem Condition

As we begin the 21st century, one of our greatest challenges is the preservation and remediation of ecosystem integrity. This requires monitoring and assessment over large geographic areas, repeatedly over time, and therefore cannot be practically fulfilled by field measurements alone. Remotely sens...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Johnson, Glen D. (Συγγραφέας), Patil, Ganapati P. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Σειρά:Environmental and Ecological Statistics ; 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03638nam a22005655i 4500
001 978-0-387-37685-1
003 DE-He213
005 20151204172113.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387376851  |9 978-0-387-37685-1 
024 7 |a 10.1007/978-0-387-37685-1  |2 doi 
040 |d GrThAP 
050 4 |a QH541.15.L35 
072 7 |a PSTS  |2 bicssc 
072 7 |a SCI020000  |2 bisacsh 
072 7 |a GAR014000  |2 bisacsh 
082 0 4 |a 577  |2 23 
100 1 |a Johnson, Glen D.  |e author. 
245 1 0 |a Landscape Pattern Analysis for Assessing Ecosystem Condition  |h [electronic resource] /  |c by Glen D. Johnson, Ganapati P. Patil. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a XVIII, 130 p. 73 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Environmental and Ecological Statistics ;  |v 1 
505 0 |a Methods for Quantitative Characterization of Landscape Pattern -- Illustrations -- Classifying Pennsylvania Watersheds on the Basis of Landscape Characteristics -- Predictability of Surface Water Pollution in Pennsylvania Using Watershed-Based Landscape Measurements -- Predictability of Bird Community-Based Ecological Integrity Using Landscape Variables -- Summary and Future Directions -- References. 
520 |a As we begin the 21st century, one of our greatest challenges is the preservation and remediation of ecosystem integrity. This requires monitoring and assessment over large geographic areas, repeatedly over time, and therefore cannot be practically fulfilled by field measurements alone. Remotely sensed imagery therefore plays a crucial role by its ability to monitor large spatially continuous areas. This technology increasingly provides extensive spatial-temporal data; however, the challenge is to extract meaningful environmental information from such extensive data. Landscape Pattern Analysis for Assessing Ecosystem Condition presents a new method for assessing spatial pattern in raster land cover maps based on satellite imagery in a way that incorporates multiple pixel resolutions. This is combined with more conventional single-resolution measurements of spatial pattern and simple non-spatial land cover proportions to assess predictability of both surface water quality and ecological integrity within watersheds of the state of Pennsylvania (USA). The efficiency of remote sensing for rapidly assessing large areas is realized through the ability to explain much of the variability of field observations that took several years and many people to obtain. 
650 0 |a Life sciences. 
650 0 |a Geographical information systems. 
650 0 |a Remote sensing. 
650 0 |a Landscape ecology. 
650 0 |a Statistics. 
650 0 |a Ecotoxicology. 
650 1 4 |a Life Sciences. 
650 2 4 |a Landscape Ecology. 
650 2 4 |a Remote Sensing/Photogrammetry. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Geographical Information Systems/Cartography. 
650 2 4 |a Ecotoxicology. 
650 2 4 |a Environmental Monitoring/Analysis. 
700 1 |a Patil, Ganapati P.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387376844 
830 0 |a Environmental and Ecological Statistics ;  |v 1 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-37685-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)