Techniques of Constructive Analysis

This text provides a rigorous, wide-ranging introduction to modern constructive analysis for anyone with a strong mathematical background who is interested in the challenge of developing mathematics algorithmically. The authors begin by outlining the history of constructive mathematics, and the logi...

Full description

Bibliographic Details
Main Authors: Bridges, Douglas S. (Author), Vîţă, Luminiţa Simona (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: New York, NY : Springer New York, 2006.
Series:Universitext
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03268nam a22005655i 4500
001 978-0-387-38147-3
003 DE-He213
005 20151125021222.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387381473  |9 978-0-387-38147-3 
024 7 |a 10.1007/978-0-387-38147-3  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
100 1 |a Bridges, Douglas S.  |e author. 
245 1 0 |a Techniques of Constructive Analysis  |h [electronic resource] /  |c by Douglas S. Bridges, Luminiţa Simona Vîţă. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XVI, 216 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a to Constructive Mathematics -- Techniques of Elementary Analysis -- The ?-Technique -- Finite-Dimensional and Hilbert Spaces -- Linearity and Convexity -- Operators and Locatedness. 
520 |a This text provides a rigorous, wide-ranging introduction to modern constructive analysis for anyone with a strong mathematical background who is interested in the challenge of developing mathematics algorithmically. The authors begin by outlining the history of constructive mathematics, and the logic and set theory that are used throughout the book. They then present a new construction of the real numbers, followed by the fundamentals of the constructive theory of metric and normed spaces; the lambda-technique (a special method that enables one to prove many results that appear, at first sight, to be nonconstructive); finite- dimensional and Hilbert spaces; and convexity, separation, and Hahn-Banach theorems. The book ends with a long chapter in which the work of the preceding ones is applied to operator theory and other aspects of functional analysis. Many results and proofs, especially in the later chapters, are of relatively recent origin. The intended readership includes advanced undergraduates, postgraduates, and professional researchers in mathematics and theoretical computer science. With this book, the authors hope to spread the message that doing mathematics constructively is interesting and challenging, and produces new, deep computational information. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Functions of real variables. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Analysis. 
650 2 4 |a Real Functions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
700 1 |a Vîţă, Luminiţa Simona.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387336466 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-38147-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)