Nonlinear Dimensionality Reduction

Methods of dimensionality reduction provide a way to understand and visualize the structure of complex data sets. Traditional methods like principal component analysis and classical metric multidimensional scaling suffer from being based on linear models. Until recently, very few methods were able t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lee, John A. (Επιμελητής έκδοσης), Verleysen, Michel (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Information Science and Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04547nam a22005775i 4500
001 978-0-387-39351-3
003 DE-He213
005 20151204140709.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387393513  |9 978-0-387-39351-3 
024 7 |a 10.1007/978-0-387-39351-3  |2 doi 
040 |d GrThAP 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a PBCD  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
245 1 0 |a Nonlinear Dimensionality Reduction  |h [electronic resource] /  |c edited by John A. Lee, Michel Verleysen. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XVII, 309 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Science and Statistics,  |x 1613-9011 
505 0 |a High-Dimensional Data -- Characteristics of an Analysis Method -- Estimation of the Intrinsic Dimension -- Distance Preservation -- Topology Preservation -- Method comparisons -- Conclusions. 
520 |a Methods of dimensionality reduction provide a way to understand and visualize the structure of complex data sets. Traditional methods like principal component analysis and classical metric multidimensional scaling suffer from being based on linear models. Until recently, very few methods were able to reduce the data dimensionality in a nonlinear way. However, since the late nineties, many new methods have been developed and nonlinear dimensionality reduction, also called manifold learning, has become a hot topic. New advances that account for this rapid growth are, e.g. the use of graphs to represent the manifold topology, and the use of new metrics like the geodesic distance. In addition, new optimization schemes, based on kernel techniques and spectral decomposition, have lead to spectral embedding, which encompasses many of the recently developed methods. This book describes existing and advanced methods to reduce the dimensionality of numerical databases. For each method, the description starts from intuitive ideas, develops the necessary mathematical details, and ends by outlining the algorithmic implementation. Methods are compared with each other with the help of different illustrative examples. The purpose of the book is to summarize clear facts and ideas about well-known methods as well as recent developments in the topic of nonlinear dimensionality reduction. With this goal in mind, methods are all described from a unifying point of view, in order to highlight their respective strengths and shortcomings. The book is primarily intended for statisticians, computer scientists and data analysts. It is also accessible to other practitioners having a basic background in statistics and/or computational learning, like psychologists (in psychometry) and economists. John A. Lee is a Postdoctoral Researcher of the Belgian National Fund for Scientific Research (FNRS). He is (co-)author of more than 30 publications in the field of machine learning and dimensionality reduction. Michel Verleysen is Professor at the Université catholique de Louvain (Louvain-la-Neuve, Belgium), and Honorary Research Director of the Belgian National Fund for Scientific Research (FNRS). He is the chairman of the annual European Symposium on Artificial Neural Networks, co-editor of the Neural Processing Letters journal (Springer), and (co-)author of more than 200 scientific publications in the field of machine learning. 
650 0 |a Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Data mining. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 0 |a Visualization. 
650 0 |a Mathematical logic. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Visualization. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
700 1 |a Lee, John A.  |e editor. 
700 1 |a Verleysen, Michel.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387393506 
830 0 |a Information Science and Statistics,  |x 1613-9011 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-39351-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)