Measurement Uncertainty An Approach via the Mathematical Theory of Evidence /

The expression of uncertainty in measurement is a challenging aspect for researchers and engineers working in instrumentation and measurement because it involves physical, mathematical and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Salicone, Simona (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Σειρά:Springer Series in Reliability Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03446nam a22005295i 4500
001 978-0-387-46328-5
003 DE-He213
005 20151204144540.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387463285  |9 978-0-387-46328-5 
024 7 |a 10.1007/978-0-387-46328-5  |2 doi 
040 |d GrThAP 
050 4 |a QA312-312.5 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.42  |2 23 
100 1 |a Salicone, Simona.  |e author. 
245 1 0 |a Measurement Uncertainty  |h [electronic resource] :  |b An Approach via the Mathematical Theory of Evidence /  |c by Simona Salicone. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a X, 228 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Reliability Engineering,  |x 1614-7839 
505 0 |a Uncertainty in Measurement -- Fuzzy Variables and Measurement Uncertainty -- The Theory of Evidence -- Random-Fuzzy Variables -- Construction of Random-Fuzzy Variables -- Fuzzy Operators -- The Mathematics of Random-Fuzzy Variables -- Representation of Random-Fuzzy Variables -- Decision-Making Rules with Random-Fuzzy Variables -- List of Symbols. 
520 |a The expression of uncertainty in measurement is a challenging aspect for researchers and engineers working in instrumentation and measurement because it involves physical, mathematical and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (GUM). This text is the first to make full use of the mathematical theory of evidence to express the uncertainty in measurements. It gives an overview of the current standard, then pinpoints and constructively resolves its limitations through its unique approach. The text presents various tools for evaluating uncertainty, beginning with the probabilistic approach and concluding with the expression of uncertainty using random-fuzzy variables. The exposition is driven by numerous examples. The book is designed for immediate use and application in research and laboratory work. Prerequisites for students include courses in statistics and measurement science. Apart from a classroom setting, this book can be used by practitioners in a variety of fields (including applied mathematics, applied probability, electrical and computer engineering, and experimental physics), and by such institutions as the IEEE, ISA, and National Institute of Standards and Technology. 
650 0 |a Mathematics. 
650 0 |a Measure theory. 
650 0 |a Probabilities. 
650 0 |a Physical measurements. 
650 0 |a Measurement. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 1 4 |a Mathematics. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
650 2 4 |a Measurement Science and Instrumentation. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387306551 
830 0 |a Springer Series in Reliability Engineering,  |x 1614-7839 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-46328-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)