Foundations of Hyperbolic Manifolds

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterizatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ratcliffe, John G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2006.
Έκδοση:Second Edition.
Σειρά:Graduate Texts in Mathematics, 149
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03264nam a22004935i 4500
001 978-0-387-47322-2
003 DE-He213
005 20151204175247.0
007 cr nn 008mamaa
008 100301s2006 xxu| s |||| 0|eng d
020 |a 9780387473222  |9 978-0-387-47322-2 
024 7 |a 10.1007/978-0-387-47322-2  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Ratcliffe, John G.  |e author. 
245 1 0 |a Foundations of Hyperbolic Manifolds  |h [electronic resource] /  |c by John G. Ratcliffe. 
250 |a Second Edition. 
264 1 |a New York, NY :  |b Springer New York,  |c 2006. 
300 |a XII, 782 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 149 
505 0 |a Euclidean Geometry -- Spherical Geometry -- Hyperbolic Geometry -- Inversive Geometry -- Isometries of Hyperbolic Space -- Geometry of Discrete Groups -- Classical Discrete Groups -- Geometric Manifolds -- Geometric Surfaces -- Hyperbolic 3-Manifolds -- Hyperbolic n-Manifolds -- Geometrically Finite n-Manifolds -- Geometric Orbifolds. 
520 |a This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. The book is divided into three parts. The first part is concerned with hyperbolic geometry and discrete groups. The main results are the characterization of hyperbolic reflection groups and Euclidean crystallographic groups. The second part is devoted to the theory of hyperbolic manifolds. The main results are Mostow’s rigidity theorem and the determination of the global geometry of hyperbolic manifolds of finite volume. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. The main result is Poincare«s fundamental polyhedron theorem. The exposition if at the level of a second year graduate student with particular emphasis placed on readability and completeness of argument. After reading this book, the reader will have the necessary background to study the current research on hyperbolic manifolds. The second edition is a thorough revision of the first edition that embodies hundreds of changes, corrections, and additions, including over sixty new lemmas, theorems, and corollaries. The new main results are Schl\¬afli’s differential formula and the $n$-dimensional Gauss-Bonnet theorem. John G. Ratcliffe is a Professor of Mathematics at Vanderbilt University. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Topology. 
650 2 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387331973 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 149 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-47322-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)