Fundamentals of Data Mining in Genomics and Proteomics
More than ever before, research and development in genomics and proteomics depends on the analysis and interpretation of large amounts of data generated by high-throughput techniques. With the advance of computational systems biology, this situation will become even more manifest as scientists will...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Boston, MA :
Springer US,
2007.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- to Genomic and Proteomic Data Analysis
- Design Principles for Microarray Investigations
- Pre-Processing DNA Microarray Data
- Pre-Processing Mass Spectrometry Data
- Visualization in Genomics and Proteomics
- Clustering — Class Discovery in the Post-Genomic Era
- Feature Selection and Dimensionality Reduction in Genomics and Proteomics
- Resampling Strategies for Model Assessment and Selection
- Classification of Genomic and Proteomic Data Using Support Vector Machines
- Networks in Cell Biology
- Identifying Important Explanatory Variables for Time-Varying Outcomes
- Text Mining in Genomics and Proteomics.