Compact Lie Groups

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Sepanski, Mark R. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Graduate Texts in Mathematics, 235
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03600nam a22006135i 4500
001 978-0-387-49158-5
003 DE-He213
005 20151204182740.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387491585  |9 978-0-387-49158-5 
024 7 |a 10.1007/978-0-387-49158-5  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Compact Lie Groups  |h [electronic resource] /  |c edited by Mark R. Sepanski. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XIII, 201 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 235 
505 0 |a Compact Lie Groups -- Representations -- HarmoniC Analysis -- Lie Algebras -- Abelian Lie Subgroups and Structure -- Roots and Associated Structures -- Highest Weight Theory. 
520 |a Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter–Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel–Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups. Key Features: • Provides an approach that minimizes advanced prerequisites • Self-contained and systematic exposition requiring no previous exposure to Lie theory • Advances quickly to the Peter–Weyl Theorem and its corresponding Fourier theory • Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations • Exercises sprinkled throughout This beginning graduate-level text, aimed primarily at Lie Groups courses and related topics, assumes familiarity with elementary concepts from group theory, analysis, and manifold theory. Students, research mathematicians, and physicists interested in Lie theory will find this text very useful. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Analysis. 
700 1 |a Sepanski, Mark R.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387302638 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 235 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-49158-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)