Multiple Testing Procedures with Applications to Genomics

This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. The methods are applied to a range of testing problems in biomedical and genomic research, including the identification of differentially...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dudoit, Sandrine (Συγγραφέας), Laan, Mark J. van der (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Springer Series in Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05390nam a22004935i 4500
001 978-0-387-49317-6
003 DE-He213
005 20151204165302.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387493176  |9 978-0-387-49317-6 
024 7 |a 10.1007/978-0-387-49317-6  |2 doi 
040 |d GrThAP 
050 4 |a QH324.2-324.25 
072 7 |a PSD  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a SCI056000  |2 bisacsh 
082 0 4 |a 570.285  |2 23 
100 1 |a Dudoit, Sandrine.  |e author. 
245 1 0 |a Multiple Testing Procedures with Applications to Genomics  |h [electronic resource] /  |c by Sandrine Dudoit, Mark J. van der Laan. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XXXIII, 590 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Multiple Hypothesis Testing -- Test Statistics Null Distribution -- Overview of Multiple Testing Procedures -- Single-Step Multiple Testing Procedures for Controlling General Type I Error Rates, ?(Fvn) -- Step-Down Multiple Testing Procedures for Controlling the Family-Wise Error Rate -- Augmentation Multiple Testing Procedures for Controlling Generalized Tail Probability Error Rates -- Resampling-Based Empirical Bayes multiple Testing Procedures for Controlling Generalized Tail Probability Error Rates -- Simulation Studies: Assessment of Test Statistics Null Distributions -- Identification of Differentially Expressed and Co-Expressed Genes in High-Throughput Gene Expression Experiments -- Multiple Tests of Association with Biological Annotation Metadata -- HIV-1 Sequence Variation and Viral Replication Capacity -- Genetic Mapping of Complex Human Traits Using Single Nucleotide Polymorphisms: The ObeLinks Project -- Software Implementation. 
520 |a This book establishes the theoretical foundations of a general methodology for multiple hypothesis testing and discusses its software implementation in R and SAS. The methods are applied to a range of testing problems in biomedical and genomic research, including the identification of differentially expressed and co-expressed genes in high-throughput gene expression experiments, such as microarray experiments; tests of association between gene expression measures and biological annotation metadata (e.g., Gene Ontology); sequence analysis; and the genetic mapping of complex traits using single nucleotide polymorphisms. The book is aimed at both statisticians interested in multiple testing theory and applied scientists encountering high-dimensional testing problems in their subject matter area. Specifically, the book proposes resampling-based single-step and stepwise multiple testing procedures for controlling a broad class of Type I error rates, defined as tail probabilities and expected values for arbitrary functions of the numbers of Type I errors and rejected hypotheses (e.g., false discovery rate). Unlike existing approaches, the procedures are based on a test statistics joint null distribution and provide Type I error control in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics. The multiple testing results are reported in terms of rejection regions, parameter confidence regions, and adjusted p-values. Sandrine Dudoit is Associate Professor of Biostatistics and Statistics at the University of California, Berkeley (www.stat.berkeley.edu/~sandrine). Her research and teaching activities concern the development and application of statistical and computational methods for the analysis of high-dimensional biomedical and genomic data. She is a founding core developer of the Bioconductor Project and is an Associate Editor for six journals, including the Annals of Applied Statistics and Statistical Applications in Genetics and Molecular Biology. Mark J. van der Laan is Hsu/Peace Professor of Biostatistics and Statistics at the University of California, Berkeley (www.stat.berkeley.edu/~laan). His research concerns causal inference, adjusting for missing and censored data, and simultaneous estimation and testing based on high-dimensional observational and experimental biomedical and genomic data. He is co-author with James Robins of Unified Methods for Censored Longitudinal Data and Causality (Springer, 2003). He is a recipient of the 2005 COPSS Presidents' and Snedecor Awards and is an active Associate Editor for five journals, including the Annals of Statistics and the International Journal of Biostatistics. 
650 0 |a Life sciences. 
650 0 |a Bioinformatics. 
650 0 |a Statistics. 
650 1 4 |a Life Sciences. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 |a Laan, Mark J. van der.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387493169 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-49317-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)