An Introduction to Sequential Dynamical Systems

Sequential Dynamical Systems (SDS) are a class of discrete dynamical systems which significantly generalize many aspects of systems such as cellular automata, and provide a framework for studying dynamical processes over graphs. This text is the first to provide a comprehensive introduction to SDS....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mortveit, Henning S. (Συγγραφέας), Reidys, Christian M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03569nam a22005535i 4500
001 978-0-387-49879-9
003 DE-He213
005 20151204173059.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387498799  |9 978-0-387-49879-9 
024 7 |a 10.1007/978-0-387-49879-9  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Mortveit, Henning S.  |e author. 
245 1 3 |a An Introduction to Sequential Dynamical Systems  |h [electronic resource] /  |c by Henning S. Mortveit, Christian M. Reidys. 
264 1 |a Boston, MA :  |b Springer US,  |c 2008. 
300 |a XII, 248 p. 73 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a What is a Sequential Dynamical System? -- A Comparative Study -- Graphs, Groups, and Dynamical Systems -- Sequential Dynamical Systems over Permutations -- Phase-Space Structure of SDS and Special Systems -- Graphs, Groups, and SDS -- Combinatorics of Sequential Dynamical Systems over Words -- Outlook. 
520 |a Sequential Dynamical Systems (SDS) are a class of discrete dynamical systems which significantly generalize many aspects of systems such as cellular automata, and provide a framework for studying dynamical processes over graphs. This text is the first to provide a comprehensive introduction to SDS. Driven by numerous examples and thought-provoking problems, the presentation offers good foundational material on finite discrete dynamical systems which leads systematically to an introduction of SDS. Techniques from combinatorics, algebra and graph theory are used to study a broad range of topics, including reversibility, the structure of fixed points and periodic orbits, equivalence, morphisms and reduction. Unlike other books that concentrate on determining the structure of various networks, this book investigates the dynamics over these networks by focusing on how the underlying graph structure influences the properties of the associated dynamical system. This book is aimed at graduate students and researchers in discrete mathematics, dynamical systems theory, theoretical computer science, and systems engineering who are interested in analysis and modeling of network dynamics as well as their computer simulations. Prerequisites include knowledge of calculus and basic discrete mathematics. Some computer experience and familiarity with elementary differential equations and dynamical systems are helpful but not necessary. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer simulation. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Simulation and Modeling. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Discrete Mathematics in Computer Science. 
700 1 |a Reidys, Christian M.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387306544 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-49879-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)