Number Theory Volume II: Analytic and Modern Tools /

The central theme of this graduate-level number theory textbook is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cohen, Henri (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Graduate Texts in Mathematics, 240
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04170nam a22005415i 4500
001 978-0-387-49894-2
003 DE-He213
005 20151204154958.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387498942  |9 978-0-387-49894-2 
024 7 |a 10.1007/978-0-387-49894-2  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Cohen, Henri.  |e author. 
245 1 0 |a Number Theory  |h [electronic resource] :  |b Volume II: Analytic and Modern Tools /  |c by Henri Cohen. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XXIII, 596 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 240 
505 0 |a Analytic Tools -- Bernoulli Polynomials and the Gamma Function -- Dirichlet Series and L-Functions -- p-adic Gamma and L-Functions -- Modern Tools -- Applications of Linear Forms in Logarithms -- Rational Points on Higher-Genus Curves -- The Super-Fermat Equation -- The Modular Approach to Diophantine Equations -- Catalan’s Equation. 
520 |a The central theme of this graduate-level number theory textbook is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three aspects. The first is the local aspect: one can do analysis in p-adic fields, and here the author starts by looking at solutions in finite fields, then proceeds to lift these solutions to local solutions using Hensel lifting. The second is the global aspect: the use of number fields, and in particular of class groups and unit groups. This classical subject is here illustrated through a wide range of examples. The third aspect deals with specific classes of equations, and in particular the general and Diophantine study of elliptic curves, including 2 and 3-descent and the Heegner point method. These subjects form the first two parts, forming Volume I. The study of Bernoulli numbers, the gamma function, and zeta and L-functions, and of p-adic analogues is treated at length in the third part of the book, including many interesting and original applications. Much more sophisticated techniques have been brought to bear on the subject of Diophantine equations, and for this reason, the author has included five chapters on these techniques forming the fourth part, which together with the third part forms Volume II. These chapters were written by Yann Bugeaud, Guillaume Hanrot, Maurice Mignotte, Sylvain Duquesne, Samir Siksek, and the author, and contain material on the use of Galois representations, points on higher-genus curves, the superfermat equation, Mihailescu's proof of Catalan's Conjecture, and applications of linear forms in logarithms. The book contains 530 exercises of varying difficulty from immediate consequences of the main text to research problems, and contain many important additional results. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Ordered algebraic structures. 
650 0 |a Computer mathematics. 
650 0 |a Algorithms. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algorithms. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387498935 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 240 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-49894-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)