Quadratic Diophantine Equations

This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open probl...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Andreescu, Titu (Συγγραφέας), Andrica, Dorin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Σειρά:Developments in Mathematics, 40
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02660nam a22004695i 4500
001 978-0-387-54109-9
003 DE-He213
005 20150629205644.0
007 cr nn 008mamaa
008 150629s2015 xxu| s |||| 0|eng d
020 |a 9780387541099  |9 978-0-387-54109-9 
024 7 |a 10.1007/978-0-387-54109-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Andreescu, Titu.  |e author. 
245 1 0 |a Quadratic Diophantine Equations  |h [electronic resource] /  |c by Titu Andreescu, Dorin Andrica. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 211 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics,  |x 1389-2177 ;  |v 40 
505 0 |a Why Quadratic Diophantine Equations? -- Continued Fractions, Diophantine Approximation and Quadratic Rings -- Pell's Equation -- General Pell's Equation -- Equations Reducible to Pell's Type Equations -- Diophantine Representations of Some Sequences -- Other Applications. 
520 |a This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebra. 
700 1 |a Andrica, Dorin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387351568 
830 0 |a Developments in Mathematics,  |x 1389-2177 ;  |v 40 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-54109-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)