An Introduction to Homological Algebra

With a wealth of examples as well as abundant applications to Algebra, this is a must-read work: a clearly written, easy-to-follow guide to Homological Algebra. The author provides a treatment of Homological Algebra which approaches the subject in terms of its origins in algebraic topology. In this...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rotman, Joseph J. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03640nam a22004575i 4500
001 978-0-387-68324-9
003 DE-He213
005 20151204155311.0
007 cr nn 008mamaa
008 110402s2009 xxu| s |||| 0|eng d
020 |a 9780387683249  |9 978-0-387-68324-9 
024 7 |a 10.1007/b98977  |2 doi 
040 |d GrThAP 
050 4 |a QA169 
072 7 |a PBC  |2 bicssc 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.6  |2 23 
100 1 |a Rotman, Joseph J.  |e author. 
245 1 3 |a An Introduction to Homological Algebra  |h [electronic resource] /  |c by Joseph J. Rotman. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XIV, 710 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Hom and Tensor -- Special Modules -- Specific Rings -- Setting the Stage -- Homology -- Tor and Ext -- Homology and Rings -- Homology and Groups -- Spectral Sequences. 
520 |a With a wealth of examples as well as abundant applications to Algebra, this is a must-read work: a clearly written, easy-to-follow guide to Homological Algebra. The author provides a treatment of Homological Algebra which approaches the subject in terms of its origins in algebraic topology. In this brand new edition the text has been fully updated and revised throughout and new material on sheaves and abelian categories has been added. Applications include the following: * to rings -- Lazard's theorem that flat modules are direct limits of free modules, Hilbert's Syzygy Theorem, Quillen-Suslin's solution of Serre's problem about projectives over polynomial rings, Serre-Auslander-Buchsbaum characterization of regular local rings (and a sketch of unique factorization); * to groups -- Schur-Zassenhaus, Gaschutz's theorem on outer automorphisms of finite p-groups, Schur multiplier, cotorsion groups; * to sheaves -- sheaf cohomology, Cech cohomology, discussion of Riemann-Roch Theorem over compact Riemann surfaces. Learning Homological Algebra is a two-stage affair. Firstly, one must learn the language of Ext and Tor, and what this describes. Secondly, one must be able to compute these things using a separate language: that of spectral sequences. The basic properties of spectral sequences are developed using exact couples. All is done in the context of bicomplexes, for almost all applications of spectral sequences involve indices. Applications include Grothendieck spectral sequences, change of rings, Lyndon-Hochschild-Serre sequence, and theorems of Leray and Cartan computing sheaf cohomology. Joseph Rotman is Professor Emeritus of Mathematics at the University of Illinois at Urbana-Champaign. He is the author of numerous successful textbooks, including Advanced Modern Algebra (Prentice-Hall 2002), Galois Theory, 2nd Edition (Springer 1998) A First Course in Abstract Algebra (Prentice-Hall 1996), Introduction to the Theory of Groups, 4th Edition (Springer 1995), and Introduction to Algebraic Topology (Springer 1988). 
650 0 |a Mathematics. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387245270 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/b98977  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)