Foundations of Optimization

The book gives a detailed and rigorous treatment of the theory of optimization (unconstrained optimization, nonlinear programming, semi-infinite programming, etc.) in finite-dimensional spaces. The fundamental results of convexity theory and the theory of duality in nonlinear programming and the the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Güler, Osman (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2010.
Σειρά:Graduate Texts in Mathematics, 258
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04024nam a22005655i 4500
001 978-0-387-68407-9
003 DE-He213
005 20151204151459.0
007 cr nn 008mamaa
008 100803s2010 xxu| s |||| 0|eng d
020 |a 9780387684079  |9 978-0-387-68407-9 
024 7 |a 10.1007/978-0-387-68407-9  |2 doi 
040 |d GrThAP 
050 4 |a QA402-402.37 
050 4 |a T57.6-57.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJM  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a BUS042000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 |a Güler, Osman.  |e author. 
245 1 0 |a Foundations of Optimization  |h [electronic resource] /  |c by Osman Güler. 
264 1 |a New York, NY :  |b Springer New York,  |c 2010. 
300 |a XVIII, 442 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 258 
505 0 |a Differential Calculus -- Unconstrained Optimization -- Variational Principles -- Convex Analysis -- Structure of Convex Sets and Functions -- Separation of Convex Sets -- Convex Polyhedra -- Linear Programming -- Nonlinear Programming -- Structured Optimization Problems -- Duality Theory and Convex Programming -- Semi-infinite Programming -- Topics in Convexity -- Three Basic Optimization Algorithms. 
520 |a The book gives a detailed and rigorous treatment of the theory of optimization (unconstrained optimization, nonlinear programming, semi-infinite programming, etc.) in finite-dimensional spaces. The fundamental results of convexity theory and the theory of duality in nonlinear programming and the theories of linear inequalities, convex polyhedra, and linear programming are covered in detail. Over two hundred, carefully selected exercises should help the students master the material of the book and give further insight. Some of the most basic results are proved in several independent ways in order to give flexibility to the instructor. A separate chapter gives extensive treatments of three of the most basic optimization algorithms (the steepest-descent method, Newton’s method, the conjugate-gradient method). The first chapter of the book introduces the necessary differential calculus tools used in the book. Several chapters contain more advanced topics in optimization such as Ekeland’s epsilon-variational principle, a deep and detailed study of separation properties of two or more convex sets in general vector spaces, Helly’s theorem and its applications to optimization, etc. The book is suitable as a textbook for a first or second course in optimization at the graduate level. It is also suitable for self-study or as a reference book for advanced readers. The book grew out of author’s experience in teaching a graduate level one-semester course a dozen times since 1993. Osman Guler is a Professor in the Department of Mathematics and Statistics at University of Maryland, Baltimore County. His research interests include mathematical programming, convex analysis, complexity of optimization problems, and operations research. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Mathematics. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Optimization. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387344317 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 258 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-68407-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)