Braid Groups

Braids and braid groups have been at the heart of mathematical development over the last two decades. Braids play an important role in diverse areas of mathematics and theoretical physics. The special beauty of the theory of braids stems from their attractive geometric nature and their close relatio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kassel, Christian (Συγγραφέας), Turaev, Vladimir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Graduate Texts in Mathematics, 247
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03312nam a22005415i 4500
001 978-0-387-68548-9
003 DE-He213
005 20151204184004.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387685489  |9 978-0-387-68548-9 
024 7 |a 10.1007/978-0-387-68548-9  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Kassel, Christian.  |e author. 
245 1 0 |a Braid Groups  |h [electronic resource] /  |c by Christian Kassel, Vladimir Turaev. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a X, 338 p. 60 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 247 
505 0 |a Braids and Braid Groups -- Braids, Knots, and Links -- Homological Representations of the Braid Groups -- Symmetric Groups and Iwahori#x2013;Hecke Algebras -- Representations of the Iwahori#x2013;Hecke Algebras -- Garside Monoids and Braid Monoids -- An Order on the Braid Groups -- Presentations of SL(Z) and PSL(Z) -- Fibrations and Homotopy Sequences -- The Birman#x2013;Murakami#x2013;Wenzl Algebras -- Left Self-Distributive Sets. 
520 |a Braids and braid groups have been at the heart of mathematical development over the last two decades. Braids play an important role in diverse areas of mathematics and theoretical physics. The special beauty of the theory of braids stems from their attractive geometric nature and their close relations to other fundamental geometric objects, such as knots, links, mapping class groups of surfaces, and configuration spaces. In this presentation the authors thoroughly examine various aspects of the theory of braids, starting from basic definitions and then moving to more recent results. The advanced topics cover the Burau and the Lawrence--Krammer--Bigelow representations of the braid groups, the Alexander--Conway and Jones link polynomials, connections with the representation theory of the Iwahori--Hecke algebras, and the Garside structure and orderability of the braid groups. This book will serve graduate students, mathematicians, and theoretical physicists interested in low-dimensional topology and its connections with representation theory. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a Algebraic Topology. 
700 1 |a Turaev, Vladimir.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387338415 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 247 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-68548-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)