Proportional Hazards Regression

The place in survival analysis now occupied by proportional hazards models and their generalizations is so large that it is no longer conceivable to offer a course on the subject without devoting at least half of the content to this topic alone. This book focuses on the theory and applications of a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: O'Quigley, John (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Statistics for Biology and Health,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03997nam a22004575i 4500
001 978-0-387-68639-4
003 DE-He213
005 20131219134447.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387686394  |9 978-0-387-68639-4 
024 7 |a 10.1007/978-0-387-68639-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a O'Quigley, John.  |e author. 
245 1 0 |a Proportional Hazards Regression  |h [electronic resource] /  |c by John O'Quigley. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Biology and Health,  |x 1431-8776 
505 0 |a Background: Probability -- Background: General inference -- Background: Survival analysis -- Marginal survival -- Regression models and subject heterogeneity -- Inference: Estimating equations -- Inference: Functions of Brownian motion -- Inference: Likelihood -- Inference: Stochastic integrals -- Inference: Small samples -- Inference: Changepoint models -- Explained variation -- Explained randomness -- Survival given covariates -- Proofs of theorems, lemmas and corollaries. 
520 |a The place in survival analysis now occupied by proportional hazards models and their generalizations is so large that it is no longer conceivable to offer a course on the subject without devoting at least half of the content to this topic alone. This book focuses on the theory and applications of a very broad class of models—proportional hazards and non-proportional hazards models, the former being viewed as a special case of the latter—which underlie modern survival analysis. Unlike other books in this area the emphasis is not on measure theoretic arguments for stochastic integrals and martingales. Instead, while inference based on counting processes and the theory of martingales is covered, much greater weight is placed on more traditional results such as the functional central limit theorem. This change in emphasis allows us in the book to devote much greater consideration to practical issues in modeling. The implications of different models, their practical interpretation, the predictive ability of any model, model construction, and model selection as well as the whole area of mis-specified models receive a great deal of attention. The book is aimed at both those interested in theory and those interested in applications. Many examples and illustrations are provided. The required mathematical and statistical background for those relatively new to the field is carefully outlined so that the material is accessible to a broad range of levels. John O’Quigley—Director of Research at the French Institut National de la Santé et de la Recherche Médicale and Professor of Mathematics at the University of California at San Diego—has published extensively on the subject of survival analysis, both in theoretical and applied journals. He has taught and carried out collaborative research at several of the world's leading departments of mathematics and statistics including the University of Washington, the Fred Hutchinson Cancer Research Center in Seattle, Harvard University, and Lancaster University, UK. 
650 0 |a Statistics. 
650 0 |a Econometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Econometrics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387251486 
830 0 |a Statistics for Biology and Health,  |x 1431-8776 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-68639-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)