Numerical Methods for Laplace Transform Inversion

Operational methods have been used for over a century to solve many problems—for example, ordinary and partial differential equations. In many problems it is fairly easy to obtain the Laplace transform, but it can be very demanding to determine the inverse Laplace transform that is the solution of t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cohen, Alan M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Σειρά:Numerical Methods and Algorithms, 5
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02989nam a22004935i 4500
001 978-0-387-68855-8
003 DE-He213
005 20151204183311.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387688558  |9 978-0-387-68855-8 
024 7 |a 10.1007/978-0-387-68855-8  |2 doi 
040 |d GrThAP 
050 4 |a QA307 
050 4 |a QA432 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.72  |2 23 
100 1 |a Cohen, Alan M.  |e author. 
245 1 0 |a Numerical Methods for Laplace Transform Inversion  |h [electronic resource] /  |c by Alan M. Cohen. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a XIV, 252 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Numerical Methods and Algorithms,  |x 1571-5698 ;  |v 5 
505 0 |a Basic Results -- Inversion Formulae and Practical Results -- The Method of Series Expansion -- Quadrature Methods -- Rational Approximation Methods -- The Method of Talbot -- Methods based on the Post-Widder Inversion Formula -- The Method of Regularization -- Survey Results -- Applications. 
520 |a Operational methods have been used for over a century to solve many problems—for example, ordinary and partial differential equations. In many problems it is fairly easy to obtain the Laplace transform, but it can be very demanding to determine the inverse Laplace transform that is the solution of the given problem. Sometimes, after some difficult contour integration, we find that a series solution results, but even this may be quite difficult to evaluate in order to get an answer at a particular time value. The advent of computers has given an impetus to developing numerical methods for the determination of the inverse Laplace transform. This book gives background material on the theory of Laplace transforms together with a comprehensive list of methods that are available at the current time. Computer programs are included for those methods that perform consistently well on a wide range of Laplace transforms. Audience This book is intended for engineers, scientists, mathematicians, statisticians and financial planners. 
650 0 |a Mathematics. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387282619 
830 0 |a Numerical Methods and Algorithms,  |x 1571-5698 ;  |v 5 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-68855-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)