Stochastic Simulation: Algorithms and Analysis

Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Asmussen, Søren (Συγγραφέας), Glynn, Peter W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Stochastic Modelling and Applied Probability, 57
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03619nam a22006135i 4500
001 978-0-387-69033-9
003 DE-He213
005 20151204152037.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387690339  |9 978-0-387-69033-9 
024 7 |a 10.1007/978-0-387-69033-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Asmussen, Søren.  |e author. 
245 1 0 |a Stochastic Simulation: Algorithms and Analysis  |h [electronic resource] /  |c by Søren Asmussen, Peter W. Glynn. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XIV, 476 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastic Modelling and Applied Probability,  |x 0172-4568 ;  |v 57 
505 0 |a General Methods and Algorithms -- Generating Random Objects -- Output Analysis -- Steady-State Simulation -- Variance-Reduction Methods -- Rare-Event Simulation -- Derivative Estimation -- Stochastic Optimization -- Algorithms for Special Models -- Numerical Integration -- Stochastic Di3erential Equations -- Gaussian Processes -- Lèvy Processes -- Markov Chain Monte Carlo Methods -- Selected Topics and Extended Examples -- What This Book Is About -- What This Book Is About. 
520 |a Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods, whereas the second half discusses model-specific algorithms. Given the wide range of examples, exercises and applications students, practitioners and researchers in probability, statistics, operations research, economics, finance, engineering as well as biology and chemistry and physics will find the book of value. Søren Asmussen is a professor of Applied Probability at Aarhus University, Denmark and Peter Glynn is the Thomas Ford professor of Engineering at Stanford University. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Economics, Mathematical. 
650 0 |a Management science. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Industrial and Production Engineering. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Quantitative Finance. 
700 1 |a Glynn, Peter W.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387306797 
830 0 |a Stochastic Modelling and Applied Probability,  |x 0172-4568 ;  |v 57 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69033-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)