Stochastic Learning and Optimization A Sensitivity-Based Approach /

Stochastic learning and optimization is a multidisciplinary subject that has wide applications in modern engineering, social, and financial problems, including those in Internet and wireless communications, manufacturing, robotics, logistics, biomedical systems, and investment science. This book is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Cao, Xi-Ren (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03523nam a22005535i 4500
001 978-0-387-69082-7
003 DE-He213
005 20151204143909.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387690827  |9 978-0-387-69082-7 
024 7 |a 10.1007/978-0-387-69082-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a PBD  |2 bicssc 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Cao, Xi-Ren.  |e author. 
245 1 0 |a Stochastic Learning and Optimization  |h [electronic resource] :  |b A Sensitivity-Based Approach /  |c by Xi-Ren Cao. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a XX, 566 p. 119 illus. With 212 Problems.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Four Disciplines in Learning and Optimization -- Perturbation Analysis -- Learning and Optimization with Perturbation Analysis -- Markov Decision Processes -- Sample-Path-Based Policy Iteration -- Reinforcement Learning -- Adaptive Control Problems as MDPs -- The Event-Based Optimization - A New Approach -- Event-Based Optimization of Markov Systems -- Constructing Sensitivity Formulas. 
520 |a Stochastic learning and optimization is a multidisciplinary subject that has wide applications in modern engineering, social, and financial problems, including those in Internet and wireless communications, manufacturing, robotics, logistics, biomedical systems, and investment science. This book is unique in the following aspects. (Four areas in one book) This book covers various disciplines in learning and optimization, including perturbation analysis (PA) of discrete-event dynamic systems, Markov decision processes (MDP)s), reinforcement learning (RL), and adaptive control, within a unified framework. (A simple approach to MDPs) This book introduces MDP theory through a simple approach based on performance difference formulas. This approach leads to results for the n-bias optimality with long-run average-cost criteria and Blackwell's optimality without discounting. (Event-based optimization) This book introduces the recently developed event-based optimization approach, which opens up a research direction in overcoming or alleviating the difficulties due to the curse of dimensionality issue by utilizing the system's special features. (Sample-path construction) This book emphasizes physical interpretations based on the sample-path construction. 
650 0 |a Computer science. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Calculus of variations. 
650 0 |a Probabilities. 
650 0 |a Engineering design. 
650 0 |a Control engineering. 
650 1 4 |a Computer Science. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Engineering Design. 
650 2 4 |a Control. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387367873 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69082-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)