Variational Methods in Imaging

This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Scherzer, Otmar (Συγγραφέας), Grasmair, Markus (Συγγραφέας), Grossauer, Harald (Συγγραφέας), Haltmeier, Markus (Συγγραφέας), Lenzen, Frank (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Σειρά:Applied Mathematical Sciences, 167
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03761nam a22006135i 4500
001 978-0-387-69277-7
003 DE-He213
005 20151103121936.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387692777  |9 978-0-387-69277-7 
024 7 |a 10.1007/978-0-387-69277-7  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Scherzer, Otmar.  |e author. 
245 1 0 |a Variational Methods in Imaging  |h [electronic resource] /  |c by Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, Frank Lenzen. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XIV, 320 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 167 
505 0 |a Fundamentals of Imaging -- Case Examples of Imaging -- Image and Noise Models -- Regularization -- Variational Regularization Methods for the Solution of Inverse Problems -- Convex Regularization Methods for Denoising -- Variational Calculus for Non-convex Regularization -- Semi-group Theory and Scale Spaces -- Inverse Scale Spaces -- Mathematical Foundations -- Functional Analysis -- Weakly Differentiable Functions -- Convex Analysis and Calculus of Variations. 
520 |a This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, and stochastic point of view - Bridges the gap between regularization theory in image analysis and in inverse problems - Presents case examples in imaging to illustrate the use of variational methods e.g. denoising, thermoacoustics, computerized tomography - Discusses link between non-convex calculus of variations, morphological analysis, and level set methods - Analyses variational methods containing classical analysis of variational methods, modern analysis such as G-norm properties, and non-convex calculus of variations - Uses numerical examples to enhance the theory This book is geared towards graduate students and researchers in applied mathematics. It can serve as a main text for graduate courses in image processing and inverse problems or as a supplemental text for courses on regularization. Researchers and computer scientists in the area of imaging science will also find this book useful. 
650 0 |a Mathematics. 
650 0 |a Radiology. 
650 0 |a Image processing. 
650 0 |a Numerical analysis. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Imaging / Radiology. 
700 1 |a Grasmair, Markus.  |e author. 
700 1 |a Grossauer, Harald.  |e author. 
700 1 |a Haltmeier, Markus.  |e author. 
700 1 |a Lenzen, Frank.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387309316 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 167 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69277-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)