Tensors The Mathematics of Relativity Theory and Continuum Mechanics /

Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, by Anadijiban Das, emerged from courses taught over the years at the University College of Dublin, Carnegie-Mellon University and Simon Fraser University. This book will serve readers well as a modern introduction to the theorie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Das, Anadijiban (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03327nam a22004335i 4500
001 978-0-387-69469-6
003 DE-He213
005 20151204160743.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387694696  |9 978-0-387-69469-6 
024 7 |a 10.1007/978-0-387-69469-6  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
245 1 0 |a Tensors  |h [electronic resource] :  |b The Mathematics of Relativity Theory and Continuum Mechanics /  |c edited by Anadijiban Das. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XII, 290 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Finite- Dimensional Vector Spaces and Linear Mappings -- Fields -- Finite-Dimensional Vector Spaces -- Linear Mappings of a Vector Space -- Dual or Covariant Vector Space -- Tensor Algebra -- The Second Order Tensors -- Higher Order Tensors -- Exterior or Grassmann Algebra -- Inner Product Vector Spaces and the Metric Tensor -- Tensor Analysis on a Differentiable Manifold -- Differentiable Manifolds -- Vectors and Curves -- Tensor Fields over Differentiable Manifolds -- Differential Forms and Exterior Derivatives -- Differentiable Manifolds with Connections -- The Affine Connection and Covariant Derivative -- Covariant Derivatives of Tensors along a Curve -- Lie Bracket, Torsion, and Curvature Tensor -- Riemannian and Pseudo-Riemannian Manifolds -- Metric, Christoffel, Ricci Rotation -- Covariant Derivatives -- Curves, Frenet-Serret Formulas, and Geodesics -- Special Coordinate Charts -- Speical Riemannian and Pseudo-Riemannian Manifolds -- Flat Manifolds -- The Space of Constant Curvature -- Extrinsic Curvature. 
520 |a  Tensors: The Mathematics of Relativity Theory and Continuum Mechanics, by Anadijiban Das, emerged from courses taught over the years at the University College of Dublin, Carnegie-Mellon University and Simon Fraser University. This book will serve readers well as a modern introduction to the theories of tensor algebra and tensor analysis. Throughout Tensors, examples and worked-out problems are furnished from the theory of relativity and continuum mechanics. Topics covered in this book include, but are not limited to: -tensor algebra -differential manifold -tensor analysis -differential forms -connection forms -curvature tensors -Riemannian and pseudo-Riemannian manifolds The extensive presentation of the mathematical tools, examples and problems make the book a unique text for the pursuit of both the mathematical relativity theory and continuum mechanics. 
650 0 |a Physics. 
650 0 |a Human physiology. 
650 1 4 |a Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Human Physiology. 
700 1 |a Das, Anadijiban.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387694689 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69469-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)