Set-Valued Mappings and Enlargements of Monotone Operators

Set-valued analysis is an essential tool for the mathematical formulation of many real-life situations, e.g., equilibrium theory in mathematical economics. This work offers the first comprehensive treatment in book form of the fairly new subdiscipline of enlargements of maximal monotone operators, i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Burachik, Regina S. (Συγγραφέας), Iusem, Alfredo N. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2008.
Σειρά:Optimization and Its Applications, 8
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04409nam a22005775i 4500
001 978-0-387-69757-4
003 DE-He213
005 20151204162257.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387697574  |9 978-0-387-69757-4 
024 7 |a 10.1007/978-0-387-69757-4  |2 doi 
040 |d GrThAP 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.7  |2 23 
100 1 |a Burachik, Regina S.  |e author. 
245 1 0 |a Set-Valued Mappings and Enlargements of Monotone Operators  |h [electronic resource] /  |c by Regina S. Burachik, Alfredo N. Iusem. 
264 1 |a Boston, MA :  |b Springer US,  |c 2008. 
300 |a XIV, 294 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Optimization and Its Applications,  |x 1931-6828 ;  |v 8 
505 0 |a Set Convergence and Point-to-Set Mappings -- Convex Analysis and Fixed Point Theorems -- Maximal Monotone Operators -- Enlargements of Monotone Operators -- Recent Topics in Proximal Theory. 
520 |a Set-valued analysis is an essential tool for the mathematical formulation of many real-life situations, e.g., equilibrium theory in mathematical economics. This work offers the first comprehensive treatment in book form of the fairly new subdiscipline of enlargements of maximal monotone operators, including several important new results in the field. In the last decades, with the development of nonsmooth optimization, effective algorithms have been developed to solve these kinds of problems, such as nonsmooth variational inequalities. Several of these methods, such as bundle methods for variational problems, are fully developed and analyzed in this book. The first chapters provide a self-contained review of the basic notions and fundamental results in set-valued analysis, including set convergence and continuity of set-valued mappings together with many important results in infinite-dimensional convex analysis, leading to the classical fixed point results due to Ekeland, Caristi and Kakutani. Next, an in-depth introduction to monotone operators is developed, emphasizing results related to maximality of subdifferentials and of sums of monotone operators. Building on this foundational material, the second part of the monograph contains new results (all of them established during the last decade) on the concept of enlargements of monotone operators, with applications to variational inequalities, bundle-type methods, augmented Lagrangian methods, and proximal point algorithms. Audience This book is addressed to mathematicians, engineers, economists, and researchers interested in acquiring a solid mathematical foundation in topics such as point-to-set operators, variational inequalities, general equilibrium theory, and nonsmooth optimization, among others. Containing extensive exercises and examples throughout the text, the first four chapters of the book can also be used for a one-quarter course in set-valued analysis and maximal monotone operators for graduate students in pure and applied mathematics, mathematical economics, operations research and related areas. The only requisites, besides a minimum level of mathematical maturity, are some basic results of general topology and functional analysis. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Management science. 
650 1 4 |a Mathematics. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Optimization. 
650 2 4 |a Operator Theory. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
700 1 |a Iusem, Alfredo N.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387697550 
830 0 |a Optimization and Its Applications,  |x 1931-6828 ;  |v 8 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69757-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)