High-Dimensional Data Analysis in Cancer Research

With the advent of high-throughput technologies, various types of high-dimensional data have been generated in recent years for the understanding of biological processes, especially processes that relate to disease occurrence or management of cancer. Motivated by these important applications in canc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Li, Xiaochun (Επιμελητής έκδοσης), Xu, Ronghui (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Σειρά:Applied Bioinformatics and Biostatistics in Cancer Research
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03478nam a22005655i 4500
001 978-0-387-69765-9
003 DE-He213
005 20151204170511.0
007 cr nn 008mamaa
008 110402s2009 xxu| s |||| 0|eng d
020 |a 9780387697659  |9 978-0-387-69765-9 
024 7 |a 10.1007/978-0-387-69765-9  |2 doi 
040 |d GrThAP 
050 4 |a RC261-271 
072 7 |a MJCL  |2 bicssc 
072 7 |a MED062000  |2 bisacsh 
082 0 4 |a 614.5999  |2 23 
245 1 0 |a High-Dimensional Data Analysis in Cancer Research  |h [electronic resource] /  |c edited by Xiaochun Li, Ronghui Xu. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a VIII, 392 p. 23 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Bioinformatics and Biostatistics in Cancer Research 
505 0 |a On the Role and Potential of High-Dimensional Biologic Data in Cancer Research -- Variable selection in regression - estimation, prediction,sparsity, inference -- Multivariate Nonparametric Regression -- Risk Estimation -- Tree-Based Methods -- Support Vector Machine Classification for High Dimensional Microarray Data Analysis, With Applications in Cancer Research -- Bayesian Approaches: Nonparametric Bayesian Analysis of Gene Expression Data. 
520 |a With the advent of high-throughput technologies, various types of high-dimensional data have been generated in recent years for the understanding of biological processes, especially processes that relate to disease occurrence or management of cancer. Motivated by these important applications in cancer research, there has been a dramatic growth in the development of statistical methodology in the analysis of high-dimensional data, particularly related to regression model selection, estimation and prediction. High-Dimensional Data Analysis in Cancer Research, edited by Xiaochun Li and Ronghui Xu, is a collective effort to showcase statistical innovations for meeting the challenges and opportunities uniquely presented by the analytical needs of high-dimensional data in cancer research, particularly in genomics and proteomics. All the chapters included in this volume contain interesting case studies to demonstrate the analysis methodology. High-Dimensional Data Analysis in Cancer Research is an invaluable reference for researchers, statisticians, bioinformaticians, graduate students and data analysts working in the fields of cancer research. 
650 0 |a Medicine. 
650 0 |a Cancer research. 
650 0 |a Human genetics. 
650 0 |a Laboratory medicine. 
650 0 |a Medical microbiology. 
650 0 |a Molecular biology. 
650 0 |a Neurosciences. 
650 1 4 |a Biomedicine. 
650 2 4 |a Cancer Research. 
650 2 4 |a Laboratory Medicine. 
650 2 4 |a Human Genetics. 
650 2 4 |a Medical Microbiology. 
650 2 4 |a Molecular Medicine. 
650 2 4 |a Neurosciences. 
700 1 |a Li, Xiaochun.  |e editor. 
700 1 |a Xu, Ronghui.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387697635 
830 0 |a Applied Bioinformatics and Biostatistics in Cancer Research 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69765-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)