The Arithmetic of Dynamical Systems

This book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic poin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Silverman, Joseph H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Graduate Texts in Mathematics, 241
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03226nam a22004815i 4500
001 978-0-387-69904-2
003 DE-He213
005 20151204181405.0
007 cr nn 008mamaa
008 100504s2007 xxu| s |||| 0|eng d
020 |a 9780387699042  |9 978-0-387-69904-2 
024 7 |a 10.1007/978-0-387-69904-2  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Silverman, Joseph H.  |e author. 
245 1 4 |a The Arithmetic of Dynamical Systems  |h [electronic resource] /  |c by Joseph H. Silverman. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XVI, 511 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 241 
505 0 |a An Introduction to Classical Dynamics -- Dynamics over Local Fields: Good Reduction -- Dynamics over Global Fields -- Families of Dynamical Systems -- Dynamics over Local Fields: Bad Reduction -- Dynamics Associated to Algebraic Groups -- Dynamics in Dimension Greater Than One. 
520 |a This book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic points under repeated application of a polynomial or rational function. A principal theme of arithmetic dynamics is that many of the fundamental problems in the theory of Diophantine equations have dynamical analogs. As is typical in any subject combining Diophantine problems and geometry, a fundamental goal is to describe arithmetic properties, at least qualitatively, in terms of underlying geometric structures. Key features: - Provides an entry for graduate students into an active field of research - Provides a standard reference source for researchers - Includes numerous exercises and examples - Contains a description of many known results and conjectures, as well as an extensive glossary, bibliography, and index This graduate-level text assumes familiarity with basic algebraic number theory. Other topics, such as basic algebraic geometry, elliptic curves, nonarchimedean analysis, and the theory of Diophantine approximation, are introduced and referenced as needed. Mathematicians and graduate students will find this text to be an excellent reference. 
650 0 |a Mathematics. 
650 0 |a Data structures (Computer science). 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Data Structures. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387699035 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 241 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69904-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)