Soft Computing for Knowledge Discovery and Data Mining

Data mining is the science and technology of exploring large and complex bodies of data in order to discover useful and insightful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. Soft Computing for Knowledge Discovery and Data...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Maimon, Oded (Επιμελητής έκδοσης), Rokach, Lior (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05437nam a22005655i 4500
001 978-0-387-69935-6
003 DE-He213
005 20151204163309.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387699356  |9 978-0-387-69935-6 
024 7 |a 10.1007/978-0-387-69935-6  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Soft Computing for Knowledge Discovery and Data Mining  |h [electronic resource] /  |c edited by Oded Maimon, Lior Rokach. 
264 1 |a Boston, MA :  |b Springer US,  |c 2008. 
300 |a XIII, 433 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Neural Network Methods -- to Soft Computing for Knowledge Discovery and Data Mining -- Neural Networks For Data Mining -- Improved SOM Labeling Methodology for Data Mining Applications -- Evolutionary Methods -- A Review of evolutionary Algorithms for Data Mining -- Genetic Clustering for Data Mining -- Discovering New Rule Induction Algorithms with Grammar-based Genetic Programming -- evolutionary Design of Code-matrices for Multiclass Problems -- Fuzzy Logic Methods -- The Role of Fuzzy Sets in Data Mining -- Support Vector Machines and Fuzzy Systems -- KDD in Marketing with Genetic Fuzzy Systems -- Knowledge Discovery in a Framework for Modelling with Words -- Advanced Soft Computing Methods and Areas -- Swarm Intelligence Algorithms for Data Clustering -- A Diffusion Framework for Dimensionality Reduction -- Data Mining and Agent Technology: a fruitful symbiosis -- Approximate Frequent Itemset Mining In the Presence of Random Noise -- The Impact of Overfitting and Overgeneralization on the Classification Accuracy in Data Mining. 
520 |a Data mining is the science and technology of exploring large and complex bodies of data in order to discover useful and insightful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. Soft Computing for Knowledge Discovery and Data Mining introduces theoretical approaches and practical computing methods extending the envelope of problems that data mining can solve efficiently. From the editors of the leading Data Mining and Knowledge Discovery Handbook, 2005, this volume, by highly regarded authors, includes selected contributors of the Handbook. The first three parts of this book are devoted to the principal constituents of soft computing: neural networks, evolutionary algorithms and fuzzy logic. The last part compiles the recent advances in soft computing for data mining, such as swarm intelligence, diffusion process and agent technology. This book was written to provide investigators in the fields of information systems, engineering, computer science, operations research, bio-informatics, statistics and management with a profound source for the role of soft computing in data mining. Not only does this book feature illustrations of various applications including marketing, manufacturing, medical, and others, but it also includes various real-world case studies with detailed results. Soft Computing for Knowledge Discovery and Data Mining is designed for theoreticians, researchers and advanced practitioners in industry. Practitioners may be particularly interested in the description of real world data mining projects performed with soft computing. This book is also suitable as a textbook or reference for advanced-level students in mathematical quantitative methods in the above fields. About the editors: Oded Maimon is Full Professor at the Department of Industrial Engineering, Tel-Aviv University, Israel. Lior Rokach is Assistant Professor at the Department of Information System Engineering, Ben-Gurion University of the Negev, Israel. Maimon and Rokach are recognized international experts in data mining and business intelligence, and serve in leading positions in this field. They have written numerous scientific articles and are the editors of the complete Data Mining and Knowledge Discovery Handbook (2005). They have jointly authored two of the best detailed books in the field of data mining: Decomposition Methodology for Knowledge Discovery and Data Mining (2005), and Data Mining with Decision Trees (2007). . 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Computer Communication Networks. 
700 1 |a Maimon, Oded.  |e editor. 
700 1 |a Rokach, Lior.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387699349 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69935-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)