Machine Learning for Multimedia Content Analysis

Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image coll...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gong, Yihong (Συγγραφέας), Xu, Wei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03744nam a22005415i 4500
001 978-0-387-69942-4
003 DE-He213
005 20151204184102.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387699424  |9 978-0-387-69942-4 
024 7 |a 10.1007/978-0-387-69942-4  |2 doi 
040 |d GrThAP 
050 4 |a QA76.575 
072 7 |a UG  |2 bicssc 
072 7 |a COM034000  |2 bisacsh 
082 0 4 |a 006.7  |2 23 
100 1 |a Gong, Yihong.  |e author. 
245 1 0 |a Machine Learning for Multimedia Content Analysis  |h [electronic resource] /  |c by Yihong Gong, Wei Xu. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a XVI, 277 p. 20 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Unsupervised Learning -- Dimension Reduction -- Data Clustering Techniques -- Generative Graphical Models -- of Graphical Models -- Markov Chains and Monte Carlo Simulation -- Markov Random Fields and Gibbs Sampling -- Hidden Markov Models -- Inference and Learning for General Graphical Models -- Discriminative Graphical Models -- Maximum Entropy Model and Conditional Random Field -- Max-Margin Classifications. 
520 |a Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image collectively conveys certain visual content to viewers. A TV video program consists of both audio and image streams that unfold the underlying story. To recognize the visual content of a digital image, or to understand the underlying story of a video program, we may need to label sets of pixels or groups of image and audio frames jointly. Machine Learning for Multimedia Content Analysis introduces machine learning techniques that are particularly powerful and effective for modeling spatial, temporal structures of multimedia data and for accomplishing common tasks of multimedia content analysis. This book systematically covers these techniques in an intuitive fashion and demonstrates their applications through case studies. This volume uses a large number of figures to illustrate and visualize complex concepts, and provides insights into the characteristics of many algorithms through examinations of their loss functions and straightforward comparisons. Machine Learning for Multimedia Content Analysis is designed for an academic and professional audience. Researchers will find this book an invaluable tool for applying machine learning techniques to multimedia content analysis. This volume is also suitable for practitioners in industry. . 
650 0 |a Computer science. 
650 0 |a Database management. 
650 0 |a Information storage and retrieval. 
650 0 |a Multimedia information systems. 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Multimedia Information Systems. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Applications. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Database Management. 
650 2 4 |a Computer Graphics. 
700 1 |a Xu, Wei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387699387 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-69942-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)