Privacy-Preserving Data Mining Models and Algorithms /

Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals. This has caused concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy Preserving Data Mining: Models and Algorithms proposes a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Aggarwal, Charu C. (Επιμελητής έκδοσης), Yu, Philip S. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2008.
Σειρά:Advances in Database Systems, 34
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • An Introduction to Privacy-Preserving Data Mining
  • A General Survey of Privacy-Preserving Data Mining Models and Algorithms
  • A Survey of Inference Control Methods for Privacy-Preserving Data Mining
  • Measures of Anonymity
  • k-Anonymous Data Mining: A Survey
  • A Survey of Randomization Methods for Privacy-Preserving Data Mining
  • A Survey of Multiplicative Perturbation for Privacy-Preserving Data Mining
  • A Survey of Quantification of Privacy Preserving Data Mining Algorithms
  • A Survey of Utility-based Privacy-Preserving Data Transformation Methods
  • Mining Association Rules under Privacy Constraints
  • A Survey of Association Rule Hiding Methods for Privacy
  • A Survey of Statistical Approaches to Preserving Confidentiality of Contingency Table Entries
  • A Survey of Privacy-Preserving Methods Across Horizontally Partitioned Data
  • A Survey of Privacy-Preserving Methods Across Vertically Partitioned Data
  • A Survey of Attack Techniques on Privacy-Preserving Data Perturbation Methods
  • Private Data Analysis via Output Perturbation
  • A Survey of Query Auditing Techniques for Data Privacy
  • Privacy and the Dimensionality Curse
  • Personalized Privacy Preservation
  • Privacy-Preserving Data Stream Classification.