Introduction to Applied Bayesian Statistics and Estimation for Social Scientists

Introduction to Applied Bayesian Statistics and Estimation for Social Scientists covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models tha...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lynch, Scott M. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Statistics for Social and Behavioral Sciences
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03670nam a22004695i 4500
001 978-0-387-71265-9
003 DE-He213
005 20151030011010.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387712659  |9 978-0-387-71265-9 
024 7 |a 10.1007/978-0-387-71265-9  |2 doi 
040 |d GrThAP 
050 4 |a H61-61.95 
072 7 |a JHBC  |2 bicssc 
072 7 |a SOC019000  |2 bisacsh 
082 0 4 |a 300.1  |2 23 
245 1 0 |a Introduction to Applied Bayesian Statistics and Estimation for Social Scientists  |h [electronic resource] /  |c edited by Scott M. Lynch. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XXVIII, 359 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Social and Behavioral Sciences 
505 0 |a Probability Theory and Classical Statistics -- Basics of Bayesian Statistics -- Modern Model Estimation Part 1: Gibbs Sampling -- Modern Model Estimation Part 2: Metroplis–Hastings Sampling -- Evaluating Markov Chain Monte Carlo Algorithms and Model Fit -- The Linear Regression Model -- Generalized Linear Models -- to Hierarchical Models -- to Multivariate Regression Models -- Conclusion.  . 
520 |a Introduction to Applied Bayesian Statistics and Estimation for Social Scientists covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research, including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models, and it thoroughly develops each real-data example in painstaking detail. The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods—including the Gibbs sampler and the Metropolis-Hastings algorithm—are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data. Scott M. Lynch is an associate professor in the Department of Sociology and Office of Population Research at Princeton University. His substantive research interests are in changes in racial and socioeconomic inequalities in health and mortality across age and time. His methodological interests are in the use of Bayesian stastistics in sociology and demography generally and in multistate life table methodology specifically. 
650 0 |a Social sciences. 
650 0 |a Statistics. 
650 0 |a Demography. 
650 1 4 |a Social Sciences. 
650 2 4 |a Methodology of the Social Sciences. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Demography. 
700 1 |a Lynch, Scott M.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387712642 
830 0 |a Statistics for Social and Behavioral Sciences 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-71265-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)