Process Optimization A Statistical Approach /

PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "noisy" systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Qualit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Castillo, Enrique Del (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Σειρά:International Series in Operations Research & Management Science, 105
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05164nam a22005895i 4500
001 978-0-387-71435-6
003 DE-He213
005 20151204184006.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387714356  |9 978-0-387-71435-6 
024 7 |a 10.1007/978-0-387-71435-6  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Castillo, Enrique Del.  |e author. 
245 1 0 |a Process Optimization  |h [electronic resource] :  |b A Statistical Approach /  |c by Enrique Del Castillo. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a XVIII, 462 p. 76 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 105 
505 0 |a Preliminaries -- An Overview of Empirical Process Optimization -- Elements of Response Surface Methods -- Optimization Of First Order Models -- Experimental Designs For First Order Models -- Analysis and Optimization of Second Order Models -- Experimental Designs for Second Order Models -- Statistical Inference in Process Optimization -- Statistical Inference in First Order RSM Optimization -- Statistical Inference in Second Order RSM Optimization -- Bias Vs. Variance -- Robust Parameter Design and Robust Optimization -- Robust Parameter Design -- Robust Optimization -- Bayesian Approaches in Process Optimization -- to Bayesian Inference -- Bayesian Methods for Process Optimization -- to Optimization of Simulation and Computer Models -- Simulation Optimization -- Kriging and Computer Experiments -- Appendices -- Basics of Linear Regression -- Analysis of Variance -- Matrix Algebra and Optimization Results -- Some Probability Results Used in Bayesian Inference. 
520 |a PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "noisy" systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Quality and Process Engineers and Applied Statisticians working in industry, in particular, in semiconductor/electronics manufacturing and in biotech manufacturing industries. The major features of PROCESS OPTIMIZATION: A Statistical Approach are: It provides a complete exposition of mainstream experimental design techniques, including designs for first and second order models, response surface and optimal designs; Discusses mainstream response surface method in detail, including unconstrained and constrained (i.e., ridge analysis and dual and multiple response) approaches; Includes an extensive discussion of Robust Parameter Design (RPD) problems, including experimental design issues such as Split Plot designs and recent optimization approaches used for RPD; Presents a detailed treatment of Bayesian Optimization approaches based on experimental data (including an introduction to Bayesian inference), including single and multiple response optimization and model robust optimization; Provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization and more; Contains a discussion on robust optimization methods as used in mathematical programming and their application in response surface optimization; Offers software programs written in MATLAB and MAPLE to implement Bayesian and frequentist process optimization methods; Provides an introduction to the optimization of computer and simulation experiments including and introduction to stochastic approximation and stochastic perturbation stochastic approximation (SPSA) methods; Includes an introduction to Kriging methods and experimental design for computer experiments; Provides extensive appendices on Linear Regression, ANOVA, and Optimization Results. . 
650 0 |a Mathematics. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Engineering design. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quality Control, Reliability, Safety and Risk. 
650 2 4 |a Engineering Design. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics, general. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387714349 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 105 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-71435-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)