Abstract Algebra

"Abstract Algebra" is a clearly written, self-contained basic algebra text for graduate students, with a generous amount of additional material that suggests the scope of contemporary algebra. The first chapters blend standard contents with a careful introduction to proofs with arrows. The...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Grillet, Pierre Antoine (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Graduate Texts in Mathematics, 242
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03058nam a22004935i 4500
001 978-0-387-71568-1
003 DE-He213
005 20151204180921.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387715681  |9 978-0-387-71568-1 
024 7 |a 10.1007/978-0-387-71568-1  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Grillet, Pierre Antoine.  |e author. 
245 1 0 |a Abstract Algebra  |h [electronic resource] /  |c by Pierre Antoine Grillet. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XII, 674 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 242 
505 0 |a Groups -- Structure of Groups -- Rings -- Field Extensions -- Galois Theory -- Fields with Orders or Valuations -- Commutative Rings -- Modules -- Semisimple Rings and Modules -- Projectives and Injectives -- Constructions -- Ext and Tor -- Algebras -- Lattices -- Universal Algebra -- Categories. 
520 |a "Abstract Algebra" is a clearly written, self-contained basic algebra text for graduate students, with a generous amount of additional material that suggests the scope of contemporary algebra. The first chapters blend standard contents with a careful introduction to proofs with arrows. The last chapters, on universal algebras and categories, including tripleability, give valuable general views of algebra. There are over 1400 exercises, at varying degrees of difficulty. For the new edition, the author has completely rewritten the entire text, streamlining the first chapters for rapid access to Galois theory, removing some material, and adding introductions to Groebner bases, Ext and Tor, and other topics. From a review of the First Edition: ...combines an exceptionally accessible discussion of the basic material with a just as thorough and well-organized treatment of the many additional (advanced) topics included.... represents an outstanding introduction to modern abstract algebra as a whole, with many unique features. It captivates the reader by its remarkable diversity, comprehensiveness, elegant succinctness, and coherence. - Werner Kleinert, Zentralblatt . 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387715674 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 242 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-71568-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)