Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis

In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. The analysis of an array of th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Zhu, Joe (Επιμελητής έκδοσης), Cook, Wade D. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04657nam a22005535i 4500
001 978-0-387-71607-7
003 DE-He213
005 20151204170822.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387716077  |9 978-0-387-71607-7 
024 7 |a 10.1007/978-0-387-71607-7  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
245 1 0 |a Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis  |h [electronic resource] /  |c edited by Joe Zhu, Wade D. Cook. 
264 1 |a Boston, MA :  |b Springer US,  |c 2007. 
300 |a VIII, 334 p. 60 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Data Irregularities And Structural Complexities In Dea -- Rank Order Data In Dea -- Interval And Ordinal Data -- Variables With Negative Values In Dea -- Non-Discretionary Inputs -- DEA with Undesirable Factors -- European Nitrate Pollution Regulation and French Pig Farms’ Performance -- PCA-DEA -- Mining Nonparametric Frontiers -- DEA Presented Graphically Using Multi-Dimensional Scaling -- DEA Models For Supply Chain or Multi-Stage Structure -- Network DEA -- Context-Dependent Data Envelopment Analysis and its Use -- Flexible Measures–Classifying Inputs and Outputs -- Integer Dea Models -- Data Envelopment Analysis With Missing Data -- Preparing Your Data for DEA. 
520 |a In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. The analysis of an array of these problems has been resistant to other methodological approaches because of the multiple levels of complexity that must be considered. Several examples of multifaceted problems in which DEA analysis has been successfully used are: (1) maintenance activities of US Air Force bases in geographically dispersed locations, (2) policy force efficiencies in the United Kingdom, (3) branch bank performances in Canada, Cyprus, and other countries and (4) the efficiency of universities in performing their education and research functions in the U.S., England, and France. In addition to localized problems, DEA applications have been extended to performance evaluations of 'larger entities' such as cities, regions, and countries. These extensions have a wider scope than traditional analyses because they include "social" and "quality-of-life" dimensions which require the modeling of qualitative and quantitative data in order to analyze the layers of complexity for an evaluation of performance and to provide solution strategies. DEA is computational at its core and this book by Zhu and Cook deals with the micro aspects of handling and modeling data issues in modeling DEA problems. DEA's use has grown with its capability of dealing with complex "service industry" and the "public service domain" types of problems that require modeling both qualitative and quantitative data. It is a handbook treatment dealing with specific data problems including the following: (1) imprecise data, (2) inaccurate data, (3) missing data, (4) qualitative data, (5) outliers, (6) undesirable outputs, (7) quality data, (8) statistical analysis, (9) software and other data aspects of modeling complex DEA problems. In addition, the book demonstrates how to visualize DEA results when the data is more than 3-dimensional, and how to identify efficiency units quickly and accurately. 
650 0 |a Business. 
650 0 |a Management science. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Mathematical optimization. 
650 0 |a Econometrics. 
650 0 |a Public finance. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Public Economics. 
650 2 4 |a Econometrics. 
650 2 4 |a Business and Management, general. 
650 2 4 |a Operations Research, Management Science. 
700 1 |a Zhu, Joe.  |e editor. 
700 1 |a Cook, Wade D.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387716060 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-71607-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)