Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis

In a relatively short period of time, Data Envelopment Analysis (DEA) has grown into a powerful quantitative, analytical tool for measuring and evaluating performance. It has been successfully applied to a whole variety of problems in many different contexts worldwide. The analysis of an array of th...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Zhu, Joe (Επιμελητής έκδοσης), Cook, Wade D. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Data Irregularities And Structural Complexities In Dea
  • Rank Order Data In Dea
  • Interval And Ordinal Data
  • Variables With Negative Values In Dea
  • Non-Discretionary Inputs
  • DEA with Undesirable Factors
  • European Nitrate Pollution Regulation and French Pig Farms’ Performance
  • PCA-DEA
  • Mining Nonparametric Frontiers
  • DEA Presented Graphically Using Multi-Dimensional Scaling
  • DEA Models For Supply Chain or Multi-Stage Structure
  • Network DEA
  • Context-Dependent Data Envelopment Analysis and its Use
  • Flexible Measures–Classifying Inputs and Outputs
  • Integer Dea Models
  • Data Envelopment Analysis With Missing Data
  • Preparing Your Data for DEA.