Information Criteria and Statistical Modeling
Winner of the 2009 Japan Statistical Association Publication Prize. The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been repor...
Κύριοι συγγραφείς: | Konishi, Sadanori (Συγγραφέας), Kitagawa, Genshiro (Συγγραφέας) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
New York, NY :
Springer New York,
2008.
|
Σειρά: | Springer Series in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Towards Advanced Data Analysis by Combining Soft Computing and Statistics
Έκδοση: (2013) -
Modern Multivariate Statistical Techniques Regression, Classification, and Manifold Learning /
ανά: Izenman, Alan J.
Έκδοση: (2008) -
Applied Probability
ανά: Lange, Kenneth
Έκδοση: (2010) -
Data Mining with SPSS Modeler Theory, Exercises and Solutions /
ανά: Wendler, Tilo, κ.ά.
Έκδοση: (2016) -
Stochastic Discrete Event Systems Modeling, Evaluation, Applications /
ανά: Zimmermann, Armin
Έκδοση: (2008)