A Basic Course in Probability Theory

The book develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. With this goal in mind, the pace is lively, yet thorough. Basic notions of independence and conditional expectation are introduced relatively ea...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bhattacharya, Rabi (Συγγραφέας), Waymire, Edward C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03596nam a22005295i 4500
001 978-0-387-71939-9
003 DE-He213
005 20151125021152.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387719399  |9 978-0-387-71939-9 
024 7 |a 10.1007/978-0-387-71939-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Bhattacharya, Rabi.  |e author. 
245 1 2 |a A Basic Course in Probability Theory  |h [electronic resource] /  |c by Rabi Bhattacharya, Edward C. Waymire. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a XII, 220 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a Random Maps, Distribution, and Mathematical Expectation -- Independence, Conditional Expectation -- Martingales and Stopping Times -- Classical Zero–One Laws, Laws of Large Numbers and Deviations -- Weak Convergence of Probability Measures -- Fourier Series, Fourier Transform, and Characteristic Functions -- Classical Central Limit Theorems -- Laplace Transforms and Tauberian Theorem -- Random Series of Independent Summands -- Kolmogorov's Extension Theorem and Brownian Motion -- Brownian Motion: The LIL and Some Fine-Scale Properties -- Skorokhod Embedding and Donsker's Invariance Principle -- A Historical Note on Brownian Motion. 
520 |a The book develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. With this goal in mind, the pace is lively, yet thorough. Basic notions of independence and conditional expectation are introduced relatively early on in the text, while conditional expectation is illustrated in detail in the context of martingales, Markov property and strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two highlights. The historic role of size-biasing is emphasized in the contexts of large deviations and in developments of Tauberian Theory. The authors assume a graduate level of maturity in mathematics, but otherwise the book will be suitable for students with varying levels of background in analysis and measure theory. In particular, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including the graduate textbook, Stochastic Processes with Applications. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Measure theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Measure and Integration. 
650 2 4 |a Analysis. 
700 1 |a Waymire, Edward C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387719382 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-71939-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)