The Riemann Hypothesis A Resource for the Afficionado and Virtuoso Alike /

The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state caref...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Borwein, Peter (Επιμελητής έκδοσης), Choi, Stephen (Επιμελητής έκδοσης), Rooney, Brendan (Επιμελητής έκδοσης), Weirathmueller, Andrea (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2008.
Σειρά:CMS Books in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03529nam a22004935i 4500
001 978-0-387-72126-2
003 DE-He213
005 20151204160935.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387721262  |9 978-0-387-72126-2 
024 7 |a 10.1007/978-0-387-72126-2  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
245 1 4 |a The Riemann Hypothesis  |h [electronic resource] :  |b A Resource for the Afficionado and Virtuoso Alike /  |c edited by Peter Borwein, Stephen Choi, Brendan Rooney, Andrea Weirathmueller. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 533 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a CMS Books in Mathematics,  |x 1613-5237 
505 0 |a to the Riemann Hypothesis -- Why This Book -- Analytic Preliminaries -- Algorithms for Calculating ?(s) -- Empirical Evidence -- Equivalent Statements -- Extensions of the Riemann Hypothesis -- Assuming the Riemann Hypothesis and Its Extensions … -- Failed Attempts at Proof -- Formulas -- Timeline -- Original Papers -- Expert Witnesses -- The Experts Speak for Themselves. 
520 |a The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a History of Mathematical Sciences. 
700 1 |a Borwein, Peter.  |e editor. 
700 1 |a Choi, Stephen.  |e editor. 
700 1 |a Rooney, Brendan.  |e editor. 
700 1 |a Weirathmueller, Andrea.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387721255 
830 0 |a CMS Books in Mathematics,  |x 1613-5237 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-72126-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)