The Real Numbers and Real Analysis

This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs.  The choice of material and the flexible organization, including three different entryways into the study of the real numbers,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bloch, Ethan D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03702nam a22004815i 4500
001 978-0-387-72177-4
003 DE-He213
005 20151204144948.0
007 cr nn 008mamaa
008 110513s2011 xxu| s |||| 0|eng d
020 |a 9780387721774  |9 978-0-387-72177-4 
024 7 |a 10.1007/978-0-387-72177-4  |2 doi 
040 |d GrThAP 
050 4 |a QA331.5 
072 7 |a PBKB  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
100 1 |a Bloch, Ethan D.  |e author. 
245 1 4 |a The Real Numbers and Real Analysis  |h [electronic resource] /  |c by Ethan D. Bloch. 
264 1 |a New York, NY :  |b Springer New York,  |c 2011. 
300 |a XXVIII, 554 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface.-To the Student.-To the Instructor.- 1. Construction of the Real Numbers -- 2. Properties of the Real Numbers -- 3. Limits and Continuity -- 4. Differentiation -- 5. Integration -- 6. Limits to Infinity.-7. Transcental Functions.-8. Sequences -- 9. Series -- 10. Sequences and Series of Functions -- Bibliography -- Index. 
520 |a This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs.  The choice of material and the flexible organization, including three different entryways into the study of the real numbers, making it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus.  The Real Numbers and Real Analysis is accessible to students who have prior experience with mathematical proofs and who have not previously studied real analysis. The text includes over 350 exercises.   Key features of this textbook:   - provides an unusually thorough treatment of the real numbers, emphasizing their importance as the basis of real analysis   - presents material in an order resembling that of standard calculus courses, for the sake of student familiarity, and for helping future teachers use real analysis to better understand calculus   - emphasizes the direct role of the Least Upper Bound Property in the study of limits, derivatives and integrals, rather than relying upon sequences for proofs; presents the equivalence of various important theorems of real analysis with the Least Upper Bound Property   - includes a thorough discussion of some topics, such as decimal expansion of real numbers, transcendental functions, area and the number p, that relate to calculus but that are not always treated in detail in real analysis texts   - offers substantial historical material in each chapter   This book will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Functions of real variables. 
650 0 |a Sequences (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Real Functions. 
650 2 4 |a Analysis. 
650 2 4 |a Sequences, Series, Summability. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387721767 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-72177-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)