Probability-2

This textbook is the second volume of a pair that presents the latest English edition of the author's classic, Probability. Building on the foundations established in the preceding Probability-1, this volume guides the reader on to the theory of random processes. The new edition includes expand...

Full description

Bibliographic Details
Main Author: Shiryaev, Albert N. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2019.
Edition:3rd ed. 2019.
Series:Graduate Texts in Mathematics, 95
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03706nam a2200469 4500
001 978-0-387-72208-5
003 DE-He213
005 20191024162001.0
007 cr nn 008mamaa
008 190323s2019 xxu| s |||| 0|eng d
020 |a 9780387722085  |9 978-0-387-72208-5 
024 7 |a 10.1007/978-0-387-72208-5  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Shiryaev, Albert N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Probability-2  |h [electronic resource] /  |c by Albert N. Shiryaev. 
250 |a 3rd ed. 2019. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2019. 
300 |a X, 348 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 95 
505 0 |a Preface -- Chapter 4: Sequences and Sums of Independent Random Variables -- Chapter 5: Stationary (Strict Sense) Random Sequences and Ergodic Theory -- Chapter 6: Stationary (Wide Sense) Random Sequences: L2-Theory -- Chapter 7: Martingales -- Chapter 8: Markov Chains -- Historical of Bibliographical Notes (Chapters 4-8) -- References -- Index -- Index of Symbols. 
520 |a This textbook is the second volume of a pair that presents the latest English edition of the author's classic, Probability. Building on the foundations established in the preceding Probability-1, this volume guides the reader on to the theory of random processes. The new edition includes expanded material on financial mathematics and financial engineering; new problems, exercises, and proofs throughout; and a Historical Review charting the development of the mathematical theory of probability. Suitable for an advanced undergraduate or beginning graduate student with a course in probability theory, this volume forms the natural sequel to Probability-1. Probability-2 opens with classical results related to sequences and sums of independent random variables, such as the zero-one laws, convergence of series, strong law of large numbers, and the law of the iterated logarithm. The subsequent chapters go on to develop the theory of random processes with discrete time: stationary processes, martingales, and Markov processes. The Historical Review illustrates the growth from intuitive notions of randomness in history through to modern day probability theory and theory of random processes. Along with its companion volume, this textbook presents a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks, martingales, Markov chains, the measure-theoretic foundations of probability theory, weak convergence of probability measures, and the central limit theorem. Many examples are discussed in detail, and there are a large number of exercises throughout. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 http://scigraph.springernature.com/things/product-market-codes/M27004 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387565927 
776 0 8 |i Printed edition:  |z 9780387722078 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 95 
856 4 0 |u https://doi.org/10.1007/978-0-387-72208-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)