An Introduction to Hopf Algebras

The study of Hopf algebras spans many fields in mathematics including topology, algebraic geometry, algebraic number theory, Galois module theory, cohomology of groups, and formal groups and has wide-ranging  connections to fields from theoretical physics to computer science. This text is unique in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Underwood, Robert G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03310nam a22004695i 4500
001 978-0-387-72766-0
003 DE-He213
005 20151204160035.0
007 cr nn 008mamaa
008 110827s2011 xxu| s |||| 0|eng d
020 |a 9780387727660  |9 978-0-387-72766-0 
024 7 |a 10.1007/978-0-387-72766-0  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Underwood, Robert G.  |e author. 
245 1 3 |a An Introduction to Hopf Algebras  |h [electronic resource] /  |c by Robert G. Underwood. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 273 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Some Notation -- 1. The Spectrum of a Ring.-2. The Zariski Topology on the Spectrum.-3. Representable Group Functors.-4. Hopf Algebras. -5. Larson Orders.-6. Formal Group Hopf Orders.-7. Hopf Orders in KC_p.-8. Hopf Orders in KC_{p^2}.-9. Hopf Orders in KC_{p^3}.-10. Hopf Orders and Galois Module Theory.-11. The Class Group of a Hopf Order.-12. Open Questions and Research Problems.-Bibliography.-Index. 
520 |a The study of Hopf algebras spans many fields in mathematics including topology, algebraic geometry, algebraic number theory, Galois module theory, cohomology of groups, and formal groups and has wide-ranging  connections to fields from theoretical physics to computer science. This text is unique in making this engaging subject accessible to advanced graduate and beginning graduate students and focuses on applications of Hopf algebras to algebraic number theory and Galois  module theory, providing a smooth transition from modern algebra to Hopf algebras. After providing an introduction to the spectrum of a ring and the Zariski topology, the text treats presheaves, sheaves, and representable group functors.  In this way the student transitions smoothly from basic algebraic geometry to Hopf algebras.  The importance of Hopf orders is underscored with applications to algebraic number theory, Galois module theory and the theory of formal groups. By the end of the book, readers will be familiar with established results in the field and ready to pose research questions of their own. An exercise set is included in each of twelve chapters with questions ranging in difficulty. Open problems and research questions are presented in the last chapter. Prerequisites include an understanding of the  material on groups, rings, and fields normally covered in a basic course in modern algebra. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387727653 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-72766-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)