Multiscale Methods Averaging and Homogenization /

This introduction to multiscale methods gives readers a broad overview of the many uses and applications of the methods. The book begins by setting the theoretical foundations of the subject area, and moves on to develop a unified approach to the simplification of a wide range of problems which poss...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Pavliotis, Grigorios A. (Συγγραφέας), Stuart, Andrew M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:Texts Applied in Mathematics, 53
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04275nam a22005895i 4500
001 978-0-387-73829-1
003 DE-He213
005 20151204142023.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387738291  |9 978-0-387-73829-1 
024 7 |a 10.1007/978-0-387-73829-1  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Pavliotis, Grigorios A.  |e author. 
245 1 0 |a Multiscale Methods  |h [electronic resource] :  |b Averaging and Homogenization /  |c by Grigorios A. Pavliotis, Andrew M. Stuart. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XVIII, 310 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts Applied in Mathematics,  |x 0939-2475 ;  |v 53 
505 0 |a Background -- Analysis -- Probability Theory and Stochastic Processes -- Ordinary Differential Equations -- Markov Chains -- Stochastic Differential Equations -- Partial Differential Equations -- Perturbation Expansions -- Invariant Manifolds for ODEs -- Averaging for Markov Chains -- Averaging for ODEs and SDEs -- Homogenization for ODEs and SDEs -- Homogenization for Elliptic PDEs -- Homogenization for Parabolic PDEs -- Averaging for Linear Transport and Parabolic PDEs -- Theory -- Invariant Manifolds for ODEs: The Convergence Theorem -- Averaging for Markov Chains: The Convergence Theorem -- Averaging for SDEs: The Convergence Theorem -- Homogenization for SDEs: The Convergence Theorem -- Homogenization for Elliptic PDEs: The Convergence Theorem -- Homogenization for Elliptic PDEs: The Convergence Theorem -- Averaging for Linear Transport and Parabolic PDEs: The Convergence Theorem. 
520 |a This introduction to multiscale methods gives readers a broad overview of the many uses and applications of the methods. The book begins by setting the theoretical foundations of the subject area, and moves on to develop a unified approach to the simplification of a wide range of problems which possess multiple scales, via perturbation expansions; differential equations and stochastic processes are studied in one unified framework. The book concludes with an overview of a range of theoretical tools used to justify the simplified models derived via the perturbation expansions. The presentation of the material is particularly suited to the range of mathematicians, scientists and engineers who want to exploit multiscale methods in applications. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable readers to build their own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter. All of the twenty-one chapters are supplemented with exercises. Grigorios Pavliotis is a Lecturer of Mathematics at Imperial College London. Andrew Stuart is a Professor of Mathematics at Warwick University. . 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Stuart, Andrew M.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387738284 
830 0 |a Texts Applied in Mathematics,  |x 0939-2475 ;  |v 53 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-73829-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)