Differential Analysis on Complex Manifolds

In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial dif...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wells, Raymond O. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2008.
Σειρά:Graduate Texts in Mathematics, 65
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03208nam a22004815i 4500
001 978-0-387-73892-5
003 DE-He213
005 20170227150033.0
007 cr nn 008mamaa
008 100715s2008 xxu| s |||| 0|eng d
020 |a 9780387738925  |9 978-0-387-73892-5 
024 7 |a 10.1007/978-0-387-73892-5  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Wells, Raymond O.  |e author. 
245 1 0 |a Differential Analysis on Complex Manifolds  |h [electronic resource] /  |c by Raymond O. Wells. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 304 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 65 
505 0 |a Manifolds and Vector Bundles -- Sheaf Theory -- Differential Geometry -- Elliptic Operator Theory -- Compact Complex Manifolds -- Kodaira's Projective Embedding Theorem. 
520 |a In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact manifolds, differential operators on a Kahler manifold, the Hodge decomposition theorem on compact Kahler manifolds, the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. The third edition of this standard reference contains a new appendix by Oscar Garcia-Prada which gives an overview of certain developments in the field during the decades since the book first appeared. From reviews of the 2nd Edition: "..the new edition of Professor Wells' book is timely and welcome...an excellent introduction for any mathematician who suspects that complex manifold techniques may be relevant to his work." - Nigel Hitchin, Bulletin of the London Mathematical Society "Its purpose is to present the basics of analysis and geometry on compact complex manifolds, and is already one of the standard sources for this material." - Daniel M. Burns, Jr., Mathematical Reviews. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387738918 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 65 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-73892-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)