Atmospheric Boundary Layers Nature, Theory and Applications to Environmental Modelling and Security /

Most of practically-used turbulence closure models are based on the concept of downgra- ent transport. Accordingly the models express turbulent uxes of momentum and scalars as products of the mean gradient of the transported property and the corresponding turbulent transport coef cient (eddy viscosi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Baklanov, Alexander (Επιμελητής έκδοσης), Grisogono, Branko (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2007.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04548nam a22005415i 4500
001 978-0-387-74321-9
003 DE-He213
005 20151204145555.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387743219  |9 978-0-387-74321-9 
024 7 |a 10.1007/978-0-387-74321-9  |2 doi 
040 |d GrThAP 
050 4 |a QC851-999 
072 7 |a RB  |2 bicssc 
072 7 |a SCI042000  |2 bisacsh 
082 0 4 |a 551.5  |2 23 
245 1 0 |a Atmospheric Boundary Layers  |h [electronic resource] :  |b Nature, Theory and Applications to Environmental Modelling and Security /  |c edited by Alexander Baklanov, Branko Grisogono. 
264 1 |a New York, NY :  |b Springer New York,  |c 2007. 
300 |a VI, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Atmospheric boundary layers: nature, theory and applications to environmental modelling and security -- Some modern features of boundary-layer meteorology: a birthday tribute for Sergej Zilitinkevich -- Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: steady-state, homogeneous regimes -- Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer -- Application of a large-eddy simulation database to optimisation of first-order closures for neutral and stably stratified boundary layers -- The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere -- The influence of nonstationarity on the turbulent flux–gradient relationship for stable stratification -- Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling -- Theoretical considerations of meandering winds in simplified conditions -- Aerodynamic roughness of the sea surface at high winds -- Modelling dust distributions in the atmospheric boundary layer on Mars -- On the turbulent Prandtl number in the stable atmospheric boundary layer -- Micrometeorological observations of a microburst in southern Finland -- Role of land-surface temperature feedback on model performance for the stable boundary layer -- Katabatic flow with Coriolis effect and gradually varying eddy diffusivity -- Parameterisation of the planetary boundary layer for diagnostic wind models. 
520 |a Most of practically-used turbulence closure models are based on the concept of downgra- ent transport. Accordingly the models express turbulent uxes of momentum and scalars as products of the mean gradient of the transported property and the corresponding turbulent transport coef cient (eddy viscosity, K , heat conductivity, K , or diffusivity, K ). Fol- M H D lowing Kolmogorov (1941), turbulent transport coef cients are taken to be proportional to the turbulent velocity scale, u , and length scale, l : T T K ? K ? K ? u l . (1) M H D T T 2 Usually u is identi ed with the turbulent kinetic energy (TKE) per unit mass, E ,and K T is calculated from the TKE budget equation using the Kolmogorov closure for the TKE dissipation rate: ? ? E /t , (2) K K T where t ? l /u is the turbulent dissipation time scale. This approach is justi ed when it T T T is applied to neutral stability ows, where l can be taken to be proportional to the distance T from the nearest wall. However, this method encounters dif culties in strati ed ows (both stable and uns- ble). The turbulent Prandtl number Pr = K /K exhibits essential dependence on the T M H strati cation and cannot be considered as constant. 
650 0 |a Earth sciences. 
650 0 |a Planetology. 
650 0 |a Atmospheric sciences. 
650 0 |a Remote sensing. 
650 0 |a Physical geography. 
650 0 |a Climate change. 
650 0 |a Air pollution. 
650 1 4 |a Earth Sciences. 
650 2 4 |a Atmospheric Sciences. 
650 2 4 |a Atmospheric Protection/Air Quality Control/Air Pollution. 
650 2 4 |a Climate Change. 
650 2 4 |a Remote Sensing/Photogrammetry. 
650 2 4 |a Planetology. 
650 2 4 |a Physical Geography. 
700 1 |a Baklanov, Alexander.  |e editor. 
700 1 |a Grisogono, Branko.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387743189 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-74321-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646)