Signal Processing Techniques for Knowledge Extraction and Information Fusion

This state-of-the-art resource brings together the latest findings from the cross-fertilization of signal processing, machine learning and computer science. The emphasis is on demonstrating synergy of different signal processing methods with knowledge extraction and heterogeneous information fusion....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Mandic, Danilo (Επιμελητής έκδοσης), Golz, Martin (Επιμελητής έκδοσης), Kuh, Anthony (Επιμελητής έκδοσης), Obradovic, Dragan (Επιμελητής έκδοσης), Tanaka, Toshihisa (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Boston, MA : Springer US, 2008.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04512nam a22005415i 4500
001 978-0-387-74367-7
003 DE-He213
005 20151125201848.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387743677  |9 978-0-387-74367-7 
024 7 |a 10.1007/978-0-387-74367-7  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Signal Processing Techniques for Knowledge Extraction and Information Fusion  |h [electronic resource] /  |c edited by Danilo Mandic, Martin Golz, Anthony Kuh, Dragan Obradovic, Toshihisa Tanaka. 
264 1 |a Boston, MA :  |b Springer US,  |c 2008. 
300 |a XXII, 320 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Collaborative Signal Processing Algorithms -- Collaborative Adaptive Filters for Online Knowledge Extraction and Information Fusion -- Wind Modelling and its Possible Application to Control of Wind Farms -- Hierarchical Filters in a Collaborative Filtering Framework for System Identification and Knowledge Retrieval -- Acoustic Parameter Extraction From Occupied Rooms Utilizing Blind Source Separation -- Signal Processing for Source Localization -- Sensor Network Localization Using Least Squares Kernel Regression -- Adaptive Localization in Wireless Networks -- Signal Processing Methods for Doppler Radar Heart Rate Monitoring -- Multimodal Fusion for Car Navigation Systems -- Information Fusion in Imaging -- Cue and Sensor Fusion for Independent Moving Objects Detection and Description in Driving Scenes -- Distributed Vision Networks for Human Pose Analysis -- Skin Color Separation and Synthesis for E-Cosmetics -- ICA for Fusion of Brain Imaging Data -- Knowledge Extraction in Brain Science -- Complex Empirical Mode Decomposition for Multichannel Information Fusion -- Information Fusion for Perceptual Feedback: A Brain Activity Sonification Approach -- Advanced EEG Signal Processing in Brain Death Diagnosis -- Automatic Knowledge Extraction: Fusion of Human Expert Ratings and Biosignal Features for Fatigue Monitoring Applications. 
520 |a This state-of-the-art resource brings together the latest findings from the cross-fertilization of signal processing, machine learning and computer science. The emphasis is on demonstrating synergy of different signal processing methods with knowledge extraction and heterogeneous information fusion. Issues related to the processing of signals with low signal-to-noise ratio, solving real-world multi-channel problems, and using adaptive techniques where nonstationarity, uncertainty and complexity play major roles are addressed. Particular methods include Independent Component Analysis, Support Vector Machines, Distributed and Collaborative Adaptive Filtering, Empirical Mode Decomposition, Self Organizing Maps, Fuzzy Logic, Evolutionary Algorithms and several others used frequently in these fields. Also included are both important and novel applications from telecommunications, renewable energy and biomedical engineering. Signal Processing Techniques for Knowledge Extraction and Information Fusion which proposes new techniques for extracting knowledge based on combining heterogeneous information sources is an excellent reference for professionals in signal and image processing, machine learning, data and sensor fusion, computational intelligence, knowledge discovery, pattern recognition, and environmental science and engineering. 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Mandic, Danilo.  |e editor. 
700 1 |a Golz, Martin.  |e editor. 
700 1 |a Kuh, Anthony.  |e editor. 
700 1 |a Obradovic, Dragan.  |e editor. 
700 1 |a Tanaka, Toshihisa.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387743660 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-74367-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)