The Mathematical Coloring Book Mathematics of Coloring and the Colorful Life of its Creators /

I have never encountered a book of this kind. The best description of it I can give is that it is a mystery novel… I found it hard to stop reading before I finished (in two days) the whole text. Soifer engages the reader's attention not only mathematically, but emotionally and esthetically. May...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Soifer, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06227nam a22004575i 4500
001 978-0-387-74642-5
003 DE-He213
005 20151204162304.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 |a 9780387746425  |9 978-0-387-74642-5 
024 7 |a 10.1007/978-0-387-74642-5  |2 doi 
040 |d GrThAP 
050 4 |a QA164-167.2 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 |a Soifer, Alexander.  |e author. 
245 1 4 |a The Mathematical Coloring Book  |h [electronic resource] :  |b Mathematics of Coloring and the Colorful Life of its Creators /  |c by Alexander Soifer. 
264 1 |a New York, NY :  |b Springer New York,  |c 2009. 
300 |a XXX, 607 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Merry-Go-Round -- A Story of Colored Polygons and Arithmetic Progressions -- Colored Plane -- Chromatic Number of the Plane: The Problem -- Chromatic Number of the Plane: An Historical Essay -- Polychromatic Number of the Plane and Results Near the Lower Bound -- De Bruijn–Erd?s Reduction to Finite Sets and Results Near the Lower Bound -- Polychromatic Number of the Plane and Results Near the Upper Bound -- Continuum of 6-Colorings of the Plane -- Chromatic Number of the Plane in Special Circumstances -- Measurable Chromatic Number of the Plane -- Coloring in Space -- Rational Coloring -- Coloring Graphs -- Chromatic Number of a Graph -- Dimension of a Graph -- Embedding 4-Chromatic Graphs in the Plane -- Embedding World Records -- Edge Chromatic Number of a Graph -- Carsten Thomassen’s 7-Color Theorem -- Coloring Maps -- How the Four-Color Conjecture Was Born -- Victorian Comedy of Errors and Colorful Progress -- Kempe–Heawood’s Five-Color Theorem and Tait’s Equivalence -- The Four-Color Theorem -- The Great Debate -- How Does One Color Infinite Maps? A Bagatelle -- Chromatic Number of the Plane Meets Map Coloring: Townsend–Woodall’s 5-Color Theorem -- Colored Graphs -- Paul Erd?s -- De Bruijn–Erd?s’s Theorem and Its History -- Edge Colored Graphs: Ramsey and Folkman Numbers -- The Ramsey Principle -- From Pigeonhole Principle to Ramsey Principle -- The Happy End Problem -- The Man behind the Theory: Frank Plumpton Ramsey -- Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath -- Ramsey Theory Before Ramsey: Hilbert’s Theorem -- Ramsey Theory Before Ramsey: Schur’s Coloring Solution of a Colored Problem and Its Generalizations -- Ramsey Theory before Ramsey: Van der Waerden Tells the Story of Creation -- Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet -- Monochromatic Arithmetic Progressions: Life After Van der Waerden -- In Search of Van der Waerden: The Early Years -- In Search of Van der Waerden: The Nazi Leipzig, 1933–1945 -- In Search of Van der Waerden: The Postwar Amsterdam, 1945166 -- In Search of Van der Waerden: The Unsettling Years, 1946–1951 -- Colored Polygons: Euclidean Ramsey Theory -- Monochromatic Polygons in a 2-Colored Plane -- 3-Colored Plane, 2-Colored Space, and Ramsey Sets -- Gallai’s Theorem -- Colored Integers in Service of Chromatic Number of the Plane: How O’Donnell Unified Ramsey Theory and No One Noticed -- Application of Baudet–Schur–Van der Waerden -- Application of Bergelson–Leibman’s and Mordell–Faltings’ Theorems -- Solution of an Erd?s Problem: O’Donnell’s Theorem -- Predicting the Future -- What If We Had No Choice? -- A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures -- Imagining the Real, Realizing the Imaginary -- Farewell to the Reader -- Two Celebrated Problems. 
520 |a I have never encountered a book of this kind. The best description of it I can give is that it is a mystery novel… I found it hard to stop reading before I finished (in two days) the whole text. Soifer engages the reader's attention not only mathematically, but emotionally and esthetically. May you enjoy the book as much as I did! –Branko Grünbaum University of Washington You are doing great service to the community by taking care of the past, so the things are better understood in the future. –Stanislaw P. Radziszowski, Rochester Institute of Technology They [Van der Waerden’s sections] meet the highest standards of historical scholarship. –Charles C. Gillispie, Princeton University You have dug up a great deal of information – my compliments! –Dirk van Dalen, Utrecht University I have just finished reading your (second) article "in search of van der Waerden". It is a masterpiece, I could not stop reading it... Congratulations! –Janos Pach, Courant Institute of Mathematics "Mathematical Coloring Book" will (we can hope) have a great and salutary influence on all writing on mathematics in the future.“ –Peter D. Johnson Jr., Auburn University Just now a postman came to the door with a copy of the masterpiece of the century. I thank you and the mathematics community should thank you for years to come. You have set a standard for writing about mathematics and mathematicians that will be hard to match. –Harold W. Kuhn, Princeton University The beautiful and unique Mathematical coloring book of Alexander Soifer is another case of ``good mathematics''… and presenting mathematics as both a science and an art… It is difficult to explain how much beautiful and good mathematics is included and how much wisdom about life is given. –Peter Mihók, Mathematical Reviews. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Mathematical logic. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387746401 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-74642-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)