Instability in Models Connected with Fluid Flows II

Instability in Models Connected with Fluid Flows II presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bardos, Claude (Επιμελητής έκδοσης), Fursikov, Andrei (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York, 2008.
Σειρά:International Mathematical Series, 7
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03764nam a22006135i 4500
001 978-0-387-75219-8
003 DE-He213
005 20151204151146.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387752198  |9 978-0-387-75219-8 
024 7 |a 10.1007/978-0-387-75219-8  |2 doi 
040 |d GrThAP 
050 4 |a TA357-359 
072 7 |a TGMF  |2 bicssc 
072 7 |a TGMF1  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI085000  |2 bisacsh 
082 0 4 |a 620.1064  |2 23 
245 1 0 |a Instability in Models Connected with Fluid Flows II  |h [electronic resource] /  |c edited by Claude Bardos, Andrei Fursikov. 
264 1 |a New York, NY :  |b Springer New York,  |c 2008. 
300 |a XXII, 378 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Mathematical Series,  |x 1571-5485 ;  |v 7 
505 0 |a Justifying Asymptotics for 3D Water–Waves -- Generalized Solutions of the Cauchy Problem for a Transport Equation with Discontinuous Coefficients -- Irreducible Chapman–Enskog Projections and Navier–Stokes Approximations -- Exponential Mixing for Randomly Forced Partial Differential Equations: Method of Coupling -- On Problem of Stability of Equilibrium Figures of Uniformly Rotating Viscous Incompressible Liquid -- Weak Spatially Nondecaying Solutions of 3D Navier–Stokes Equations in Cylindrical Domains -- On Global in Time Properties of the Symmetric Compressible Barotropic Navier–Stokes–Poisson Flows in a Vacuum. 
520 |a Instability in Models Connected with Fluid Flows II presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: the free surface Euler (or water-wave) equations, the Cauchy problem for transport equations, irreducible Chapman--Enskog projections and Navier-Stokes approximations, randomly forced PDEs, stability of equilibrium figures of uniformly rotating viscous incompressible liquid, Navier-Stokes equations in cylindrical domains, Navier-Stokes-Poisson flows in a vacuum. Contributors include: David Lannes (France); Evgenii Panov (Russia); Evgenii Radkevich (Russia); Armen Shirikyan (France); Vsevolod Solonnikov (Italy-Russia); Sergey Zelik (UK); Alexander Zlotnik (Russia). 
650 0 |a Engineering. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Computer mathematics. 
650 0 |a Calculus of variations. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Fluid mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Analysis. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Theoretical and Applied Mechanics. 
700 1 |a Bardos, Claude.  |e editor. 
700 1 |a Fursikov, Andrei.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9780387752181 
830 0 |a International Mathematical Series,  |x 1571-5485 ;  |v 7 
856 4 0 |u http://dx.doi.org/10.1007/978-0-387-75219-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)